Loading…
Tests on a 6 T Conduction-Cooled Superconducting Magnet
A 6 T conduction-cooled superconducting magnet was designed, fabricated and tested. The magnet is composed of two coaxial NbTi solenoid coils with identical axial length. Clear bore of the magnet is phi 226 mm. The magnet is installed in a vacuum cryostat with a phi 100 mm room temperature bore. The...
Saved in:
Published in: | IEEE transactions on applied superconductivity 2006-06, Vol.16 (2), p.961-964 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c352t-5308409df6ed3f70a66cedfedbf56c3c89b9a20ed3c72b1394f41e3c4825b953 |
---|---|
cites | cdi_FETCH-LOGICAL-c352t-5308409df6ed3f70a66cedfedbf56c3c89b9a20ed3c72b1394f41e3c4825b953 |
container_end_page | 964 |
container_issue | 2 |
container_start_page | 961 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 16 |
creator | Dai, Y. Yan, L. Zhao, B. Song, S. Lei, Y. Wang, Q. |
description | A 6 T conduction-cooled superconducting magnet was designed, fabricated and tested. The magnet is composed of two coaxial NbTi solenoid coils with identical axial length. Clear bore of the magnet is phi 226 mm. The magnet is installed in a vacuum cryostat with a phi 100 mm room temperature bore. The cryostat is designed in a support frame to be rotatable in a horizontal or vertical direction. A two-stage 4 K Gifford-McMahon (GM) cryocooler is used to cool down the superconducting magnet from room temperature to 4 K. The cooling power of the 4 K cold head is 1 W. A pair of Bi-2223 high temperature superconducting current leads was employed to reduce heat leakage into 4 K cold mass. Total cold mass of the superconducting magnet is about 115 kg. It takes 82 hours to cool down the magnet from 300 K to 4 K directly through the cryocooler. The superconducting magnet reached the designed central magnetic field of 6 T in the warm bore when a 115 A energizing current is applied. The superconducting magnet was stably operating more than 275 hours continuously in full field. Further, a Nb 3 Sn coil insert to be installed, the magnet can provide the maximum center field of 10 T with effective warm bore of phi 100 mm. In this paper, the detailed design, fabrication and test are presented |
doi_str_mv | 10.1109/TASC.2006.873331 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_914662296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1643006</ieee_id><sourcerecordid>914662296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-5308409df6ed3f70a66cedfedbf56c3c89b9a20ed3c72b1394f41e3c4825b953</originalsourceid><addsrcrecordid>eNpdkEtLAzEUhYMoWKt7wc0giKupeU-yLIMvqLjo7EMmk5Qp06QmMwv_vSktFFzdyz3fPRwOAPcILhCC8qVZrusFhpAvREUIQRdghhgTJWaIXeYdMlQKjMk1uElpCyGigrIZqBqbxlQEX-iCF01RB99NZuyDL-sQBtsV62lvozmd_ab40htvx1tw5fSQ7N1pzkHz9trUH-Xq-_2zXq5KQxgeS0agoFB2jtuOuApqzo3tnO1ax7ghRshWagyzaCrcIiKpo8gSQwVmrWRkDp6PtvsYfqYcVe36ZOwwaG_DlJRElHOMJc_k4z9yG6boc7YMYQwrLlCG4BEyMaQUrVP72O90_FUIqkON6lCjOtSojjXml6eTr05GDy5qb_p0_qsklTyjc_Bw5Hpr7VnmlGQz8gevEXko</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912207681</pqid></control><display><type>article</type><title>Tests on a 6 T Conduction-Cooled Superconducting Magnet</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Dai, Y. ; Yan, L. ; Zhao, B. ; Song, S. ; Lei, Y. ; Wang, Q.</creator><creatorcontrib>Dai, Y. ; Yan, L. ; Zhao, B. ; Song, S. ; Lei, Y. ; Wang, Q.</creatorcontrib><description>A 6 T conduction-cooled superconducting magnet was designed, fabricated and tested. The magnet is composed of two coaxial NbTi solenoid coils with identical axial length. Clear bore of the magnet is phi 226 mm. The magnet is installed in a vacuum cryostat with a phi 100 mm room temperature bore. The cryostat is designed in a support frame to be rotatable in a horizontal or vertical direction. A two-stage 4 K Gifford-McMahon (GM) cryocooler is used to cool down the superconducting magnet from room temperature to 4 K. The cooling power of the 4 K cold head is 1 W. A pair of Bi-2223 high temperature superconducting current leads was employed to reduce heat leakage into 4 K cold mass. Total cold mass of the superconducting magnet is about 115 kg. It takes 82 hours to cool down the magnet from 300 K to 4 K directly through the cryocooler. The superconducting magnet reached the designed central magnetic field of 6 T in the warm bore when a 115 A energizing current is applied. The superconducting magnet was stably operating more than 275 hours continuously in full field. Further, a Nb 3 Sn coil insert to be installed, the magnet can provide the maximum center field of 10 T with effective warm bore of phi 100 mm. In this paper, the detailed design, fabrication and test are presented</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2006.873331</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Boring ; Coaxial components ; Coils ; Cold heading ; COLD WORKING ; Conduction-cooled magnet ; Cooling ; cryocooler ; Cryostats ; Design. Technologies. Operation analysis. Testing ; Electric connection. Cables. Wiring ; Electrical engineering. Electrical power engineering ; Electromagnets ; Electronics ; Exact sciences and technology ; Integrated circuits ; MAGNETIC FIELD ; Magnetic fields ; Magnetism ; MAGNETS ; Niobium compounds ; quench detection ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; SOLENOIDS ; stress analysis ; Superconducting coils ; Superconducting magnets ; SUPERCONDUCTIVITY ; SUPERCONDUCTORS ; Temperature ; Testing ; Titanium compounds ; Various equipment and components</subject><ispartof>IEEE transactions on applied superconductivity, 2006-06, Vol.16 (2), p.961-964</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-5308409df6ed3f70a66cedfedbf56c3c89b9a20ed3c72b1394f41e3c4825b953</citedby><cites>FETCH-LOGICAL-c352t-5308409df6ed3f70a66cedfedbf56c3c89b9a20ed3c72b1394f41e3c4825b953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1643006$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902,54771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17949673$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dai, Y.</creatorcontrib><creatorcontrib>Yan, L.</creatorcontrib><creatorcontrib>Zhao, B.</creatorcontrib><creatorcontrib>Song, S.</creatorcontrib><creatorcontrib>Lei, Y.</creatorcontrib><creatorcontrib>Wang, Q.</creatorcontrib><title>Tests on a 6 T Conduction-Cooled Superconducting Magnet</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>A 6 T conduction-cooled superconducting magnet was designed, fabricated and tested. The magnet is composed of two coaxial NbTi solenoid coils with identical axial length. Clear bore of the magnet is phi 226 mm. The magnet is installed in a vacuum cryostat with a phi 100 mm room temperature bore. The cryostat is designed in a support frame to be rotatable in a horizontal or vertical direction. A two-stage 4 K Gifford-McMahon (GM) cryocooler is used to cool down the superconducting magnet from room temperature to 4 K. The cooling power of the 4 K cold head is 1 W. A pair of Bi-2223 high temperature superconducting current leads was employed to reduce heat leakage into 4 K cold mass. Total cold mass of the superconducting magnet is about 115 kg. It takes 82 hours to cool down the magnet from 300 K to 4 K directly through the cryocooler. The superconducting magnet reached the designed central magnetic field of 6 T in the warm bore when a 115 A energizing current is applied. The superconducting magnet was stably operating more than 275 hours continuously in full field. Further, a Nb 3 Sn coil insert to be installed, the magnet can provide the maximum center field of 10 T with effective warm bore of phi 100 mm. In this paper, the detailed design, fabrication and test are presented</description><subject>Applied sciences</subject><subject>Boring</subject><subject>Coaxial components</subject><subject>Coils</subject><subject>Cold heading</subject><subject>COLD WORKING</subject><subject>Conduction-cooled magnet</subject><subject>Cooling</subject><subject>cryocooler</subject><subject>Cryostats</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electric connection. Cables. Wiring</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electromagnets</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Integrated circuits</subject><subject>MAGNETIC FIELD</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>MAGNETS</subject><subject>Niobium compounds</subject><subject>quench detection</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>SOLENOIDS</subject><subject>stress analysis</subject><subject>Superconducting coils</subject><subject>Superconducting magnets</subject><subject>SUPERCONDUCTIVITY</subject><subject>SUPERCONDUCTORS</subject><subject>Temperature</subject><subject>Testing</subject><subject>Titanium compounds</subject><subject>Various equipment and components</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLAzEUhYMoWKt7wc0giKupeU-yLIMvqLjo7EMmk5Qp06QmMwv_vSktFFzdyz3fPRwOAPcILhCC8qVZrusFhpAvREUIQRdghhgTJWaIXeYdMlQKjMk1uElpCyGigrIZqBqbxlQEX-iCF01RB99NZuyDL-sQBtsV62lvozmd_ab40htvx1tw5fSQ7N1pzkHz9trUH-Xq-_2zXq5KQxgeS0agoFB2jtuOuApqzo3tnO1ax7ghRshWagyzaCrcIiKpo8gSQwVmrWRkDp6PtvsYfqYcVe36ZOwwaG_DlJRElHOMJc_k4z9yG6boc7YMYQwrLlCG4BEyMaQUrVP72O90_FUIqkON6lCjOtSojjXml6eTr05GDy5qb_p0_qsklTyjc_Bw5Hpr7VnmlGQz8gevEXko</recordid><startdate>20060601</startdate><enddate>20060601</enddate><creator>Dai, Y.</creator><creator>Yan, L.</creator><creator>Zhao, B.</creator><creator>Song, S.</creator><creator>Lei, Y.</creator><creator>Wang, Q.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope></search><sort><creationdate>20060601</creationdate><title>Tests on a 6 T Conduction-Cooled Superconducting Magnet</title><author>Dai, Y. ; Yan, L. ; Zhao, B. ; Song, S. ; Lei, Y. ; Wang, Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-5308409df6ed3f70a66cedfedbf56c3c89b9a20ed3c72b1394f41e3c4825b953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Boring</topic><topic>Coaxial components</topic><topic>Coils</topic><topic>Cold heading</topic><topic>COLD WORKING</topic><topic>Conduction-cooled magnet</topic><topic>Cooling</topic><topic>cryocooler</topic><topic>Cryostats</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electric connection. Cables. Wiring</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electromagnets</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Integrated circuits</topic><topic>MAGNETIC FIELD</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>MAGNETS</topic><topic>Niobium compounds</topic><topic>quench detection</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>SOLENOIDS</topic><topic>stress analysis</topic><topic>Superconducting coils</topic><topic>Superconducting magnets</topic><topic>SUPERCONDUCTIVITY</topic><topic>SUPERCONDUCTORS</topic><topic>Temperature</topic><topic>Testing</topic><topic>Titanium compounds</topic><topic>Various equipment and components</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Y.</creatorcontrib><creatorcontrib>Yan, L.</creatorcontrib><creatorcontrib>Zhao, B.</creatorcontrib><creatorcontrib>Song, S.</creatorcontrib><creatorcontrib>Lei, Y.</creatorcontrib><creatorcontrib>Wang, Q.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Y.</au><au>Yan, L.</au><au>Zhao, B.</au><au>Song, S.</au><au>Lei, Y.</au><au>Wang, Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tests on a 6 T Conduction-Cooled Superconducting Magnet</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2006-06-01</date><risdate>2006</risdate><volume>16</volume><issue>2</issue><spage>961</spage><epage>964</epage><pages>961-964</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>A 6 T conduction-cooled superconducting magnet was designed, fabricated and tested. The magnet is composed of two coaxial NbTi solenoid coils with identical axial length. Clear bore of the magnet is phi 226 mm. The magnet is installed in a vacuum cryostat with a phi 100 mm room temperature bore. The cryostat is designed in a support frame to be rotatable in a horizontal or vertical direction. A two-stage 4 K Gifford-McMahon (GM) cryocooler is used to cool down the superconducting magnet from room temperature to 4 K. The cooling power of the 4 K cold head is 1 W. A pair of Bi-2223 high temperature superconducting current leads was employed to reduce heat leakage into 4 K cold mass. Total cold mass of the superconducting magnet is about 115 kg. It takes 82 hours to cool down the magnet from 300 K to 4 K directly through the cryocooler. The superconducting magnet reached the designed central magnetic field of 6 T in the warm bore when a 115 A energizing current is applied. The superconducting magnet was stably operating more than 275 hours continuously in full field. Further, a Nb 3 Sn coil insert to be installed, the magnet can provide the maximum center field of 10 T with effective warm bore of phi 100 mm. In this paper, the detailed design, fabrication and test are presented</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2006.873331</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2006-06, Vol.16 (2), p.961-964 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_proquest_miscellaneous_914662296 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Boring Coaxial components Coils Cold heading COLD WORKING Conduction-cooled magnet Cooling cryocooler Cryostats Design. Technologies. Operation analysis. Testing Electric connection. Cables. Wiring Electrical engineering. Electrical power engineering Electromagnets Electronics Exact sciences and technology Integrated circuits MAGNETIC FIELD Magnetic fields Magnetism MAGNETS Niobium compounds quench detection Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices SOLENOIDS stress analysis Superconducting coils Superconducting magnets SUPERCONDUCTIVITY SUPERCONDUCTORS Temperature Testing Titanium compounds Various equipment and components |
title | Tests on a 6 T Conduction-Cooled Superconducting Magnet |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A18%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tests%20on%20a%206%20T%20Conduction-Cooled%20Superconducting%20Magnet&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Dai,%20Y.&rft.date=2006-06-01&rft.volume=16&rft.issue=2&rft.spage=961&rft.epage=964&rft.pages=961-964&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2006.873331&rft_dat=%3Cproquest_cross%3E914662296%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-5308409df6ed3f70a66cedfedbf56c3c89b9a20ed3c72b1394f41e3c4825b953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=912207681&rft_id=info:pmid/&rft_ieee_id=1643006&rfr_iscdi=true |