Loading…

Tests on a 6 T Conduction-Cooled Superconducting Magnet

A 6 T conduction-cooled superconducting magnet was designed, fabricated and tested. The magnet is composed of two coaxial NbTi solenoid coils with identical axial length. Clear bore of the magnet is phi 226 mm. The magnet is installed in a vacuum cryostat with a phi 100 mm room temperature bore. The...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on applied superconductivity 2006-06, Vol.16 (2), p.961-964
Main Authors: Dai, Y., Yan, L., Zhao, B., Song, S., Lei, Y., Wang, Q.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c352t-5308409df6ed3f70a66cedfedbf56c3c89b9a20ed3c72b1394f41e3c4825b953
cites cdi_FETCH-LOGICAL-c352t-5308409df6ed3f70a66cedfedbf56c3c89b9a20ed3c72b1394f41e3c4825b953
container_end_page 964
container_issue 2
container_start_page 961
container_title IEEE transactions on applied superconductivity
container_volume 16
creator Dai, Y.
Yan, L.
Zhao, B.
Song, S.
Lei, Y.
Wang, Q.
description A 6 T conduction-cooled superconducting magnet was designed, fabricated and tested. The magnet is composed of two coaxial NbTi solenoid coils with identical axial length. Clear bore of the magnet is phi 226 mm. The magnet is installed in a vacuum cryostat with a phi 100 mm room temperature bore. The cryostat is designed in a support frame to be rotatable in a horizontal or vertical direction. A two-stage 4 K Gifford-McMahon (GM) cryocooler is used to cool down the superconducting magnet from room temperature to 4 K. The cooling power of the 4 K cold head is 1 W. A pair of Bi-2223 high temperature superconducting current leads was employed to reduce heat leakage into 4 K cold mass. Total cold mass of the superconducting magnet is about 115 kg. It takes 82 hours to cool down the magnet from 300 K to 4 K directly through the cryocooler. The superconducting magnet reached the designed central magnetic field of 6 T in the warm bore when a 115 A energizing current is applied. The superconducting magnet was stably operating more than 275 hours continuously in full field. Further, a Nb 3 Sn coil insert to be installed, the magnet can provide the maximum center field of 10 T with effective warm bore of phi 100 mm. In this paper, the detailed design, fabrication and test are presented
doi_str_mv 10.1109/TASC.2006.873331
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_914662296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1643006</ieee_id><sourcerecordid>914662296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-5308409df6ed3f70a66cedfedbf56c3c89b9a20ed3c72b1394f41e3c4825b953</originalsourceid><addsrcrecordid>eNpdkEtLAzEUhYMoWKt7wc0giKupeU-yLIMvqLjo7EMmk5Qp06QmMwv_vSktFFzdyz3fPRwOAPcILhCC8qVZrusFhpAvREUIQRdghhgTJWaIXeYdMlQKjMk1uElpCyGigrIZqBqbxlQEX-iCF01RB99NZuyDL-sQBtsV62lvozmd_ab40htvx1tw5fSQ7N1pzkHz9trUH-Xq-_2zXq5KQxgeS0agoFB2jtuOuApqzo3tnO1ax7ghRshWagyzaCrcIiKpo8gSQwVmrWRkDp6PtvsYfqYcVe36ZOwwaG_DlJRElHOMJc_k4z9yG6boc7YMYQwrLlCG4BEyMaQUrVP72O90_FUIqkON6lCjOtSojjXml6eTr05GDy5qb_p0_qsklTyjc_Bw5Hpr7VnmlGQz8gevEXko</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912207681</pqid></control><display><type>article</type><title>Tests on a 6 T Conduction-Cooled Superconducting Magnet</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Dai, Y. ; Yan, L. ; Zhao, B. ; Song, S. ; Lei, Y. ; Wang, Q.</creator><creatorcontrib>Dai, Y. ; Yan, L. ; Zhao, B. ; Song, S. ; Lei, Y. ; Wang, Q.</creatorcontrib><description>A 6 T conduction-cooled superconducting magnet was designed, fabricated and tested. The magnet is composed of two coaxial NbTi solenoid coils with identical axial length. Clear bore of the magnet is phi 226 mm. The magnet is installed in a vacuum cryostat with a phi 100 mm room temperature bore. The cryostat is designed in a support frame to be rotatable in a horizontal or vertical direction. A two-stage 4 K Gifford-McMahon (GM) cryocooler is used to cool down the superconducting magnet from room temperature to 4 K. The cooling power of the 4 K cold head is 1 W. A pair of Bi-2223 high temperature superconducting current leads was employed to reduce heat leakage into 4 K cold mass. Total cold mass of the superconducting magnet is about 115 kg. It takes 82 hours to cool down the magnet from 300 K to 4 K directly through the cryocooler. The superconducting magnet reached the designed central magnetic field of 6 T in the warm bore when a 115 A energizing current is applied. The superconducting magnet was stably operating more than 275 hours continuously in full field. Further, a Nb 3 Sn coil insert to be installed, the magnet can provide the maximum center field of 10 T with effective warm bore of phi 100 mm. In this paper, the detailed design, fabrication and test are presented</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2006.873331</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Boring ; Coaxial components ; Coils ; Cold heading ; COLD WORKING ; Conduction-cooled magnet ; Cooling ; cryocooler ; Cryostats ; Design. Technologies. Operation analysis. Testing ; Electric connection. Cables. Wiring ; Electrical engineering. Electrical power engineering ; Electromagnets ; Electronics ; Exact sciences and technology ; Integrated circuits ; MAGNETIC FIELD ; Magnetic fields ; Magnetism ; MAGNETS ; Niobium compounds ; quench detection ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; SOLENOIDS ; stress analysis ; Superconducting coils ; Superconducting magnets ; SUPERCONDUCTIVITY ; SUPERCONDUCTORS ; Temperature ; Testing ; Titanium compounds ; Various equipment and components</subject><ispartof>IEEE transactions on applied superconductivity, 2006-06, Vol.16 (2), p.961-964</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-5308409df6ed3f70a66cedfedbf56c3c89b9a20ed3c72b1394f41e3c4825b953</citedby><cites>FETCH-LOGICAL-c352t-5308409df6ed3f70a66cedfedbf56c3c89b9a20ed3c72b1394f41e3c4825b953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1643006$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902,54771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17949673$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dai, Y.</creatorcontrib><creatorcontrib>Yan, L.</creatorcontrib><creatorcontrib>Zhao, B.</creatorcontrib><creatorcontrib>Song, S.</creatorcontrib><creatorcontrib>Lei, Y.</creatorcontrib><creatorcontrib>Wang, Q.</creatorcontrib><title>Tests on a 6 T Conduction-Cooled Superconducting Magnet</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>A 6 T conduction-cooled superconducting magnet was designed, fabricated and tested. The magnet is composed of two coaxial NbTi solenoid coils with identical axial length. Clear bore of the magnet is phi 226 mm. The magnet is installed in a vacuum cryostat with a phi 100 mm room temperature bore. The cryostat is designed in a support frame to be rotatable in a horizontal or vertical direction. A two-stage 4 K Gifford-McMahon (GM) cryocooler is used to cool down the superconducting magnet from room temperature to 4 K. The cooling power of the 4 K cold head is 1 W. A pair of Bi-2223 high temperature superconducting current leads was employed to reduce heat leakage into 4 K cold mass. Total cold mass of the superconducting magnet is about 115 kg. It takes 82 hours to cool down the magnet from 300 K to 4 K directly through the cryocooler. The superconducting magnet reached the designed central magnetic field of 6 T in the warm bore when a 115 A energizing current is applied. The superconducting magnet was stably operating more than 275 hours continuously in full field. Further, a Nb 3 Sn coil insert to be installed, the magnet can provide the maximum center field of 10 T with effective warm bore of phi 100 mm. In this paper, the detailed design, fabrication and test are presented</description><subject>Applied sciences</subject><subject>Boring</subject><subject>Coaxial components</subject><subject>Coils</subject><subject>Cold heading</subject><subject>COLD WORKING</subject><subject>Conduction-cooled magnet</subject><subject>Cooling</subject><subject>cryocooler</subject><subject>Cryostats</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electric connection. Cables. Wiring</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electromagnets</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Integrated circuits</subject><subject>MAGNETIC FIELD</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>MAGNETS</subject><subject>Niobium compounds</subject><subject>quench detection</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>SOLENOIDS</subject><subject>stress analysis</subject><subject>Superconducting coils</subject><subject>Superconducting magnets</subject><subject>SUPERCONDUCTIVITY</subject><subject>SUPERCONDUCTORS</subject><subject>Temperature</subject><subject>Testing</subject><subject>Titanium compounds</subject><subject>Various equipment and components</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLAzEUhYMoWKt7wc0giKupeU-yLIMvqLjo7EMmk5Qp06QmMwv_vSktFFzdyz3fPRwOAPcILhCC8qVZrusFhpAvREUIQRdghhgTJWaIXeYdMlQKjMk1uElpCyGigrIZqBqbxlQEX-iCF01RB99NZuyDL-sQBtsV62lvozmd_ab40htvx1tw5fSQ7N1pzkHz9trUH-Xq-_2zXq5KQxgeS0agoFB2jtuOuApqzo3tnO1ax7ghRshWagyzaCrcIiKpo8gSQwVmrWRkDp6PtvsYfqYcVe36ZOwwaG_DlJRElHOMJc_k4z9yG6boc7YMYQwrLlCG4BEyMaQUrVP72O90_FUIqkON6lCjOtSojjXml6eTr05GDy5qb_p0_qsklTyjc_Bw5Hpr7VnmlGQz8gevEXko</recordid><startdate>20060601</startdate><enddate>20060601</enddate><creator>Dai, Y.</creator><creator>Yan, L.</creator><creator>Zhao, B.</creator><creator>Song, S.</creator><creator>Lei, Y.</creator><creator>Wang, Q.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope></search><sort><creationdate>20060601</creationdate><title>Tests on a 6 T Conduction-Cooled Superconducting Magnet</title><author>Dai, Y. ; Yan, L. ; Zhao, B. ; Song, S. ; Lei, Y. ; Wang, Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-5308409df6ed3f70a66cedfedbf56c3c89b9a20ed3c72b1394f41e3c4825b953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Boring</topic><topic>Coaxial components</topic><topic>Coils</topic><topic>Cold heading</topic><topic>COLD WORKING</topic><topic>Conduction-cooled magnet</topic><topic>Cooling</topic><topic>cryocooler</topic><topic>Cryostats</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electric connection. Cables. Wiring</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electromagnets</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Integrated circuits</topic><topic>MAGNETIC FIELD</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>MAGNETS</topic><topic>Niobium compounds</topic><topic>quench detection</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>SOLENOIDS</topic><topic>stress analysis</topic><topic>Superconducting coils</topic><topic>Superconducting magnets</topic><topic>SUPERCONDUCTIVITY</topic><topic>SUPERCONDUCTORS</topic><topic>Temperature</topic><topic>Testing</topic><topic>Titanium compounds</topic><topic>Various equipment and components</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Y.</creatorcontrib><creatorcontrib>Yan, L.</creatorcontrib><creatorcontrib>Zhao, B.</creatorcontrib><creatorcontrib>Song, S.</creatorcontrib><creatorcontrib>Lei, Y.</creatorcontrib><creatorcontrib>Wang, Q.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Y.</au><au>Yan, L.</au><au>Zhao, B.</au><au>Song, S.</au><au>Lei, Y.</au><au>Wang, Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tests on a 6 T Conduction-Cooled Superconducting Magnet</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2006-06-01</date><risdate>2006</risdate><volume>16</volume><issue>2</issue><spage>961</spage><epage>964</epage><pages>961-964</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>A 6 T conduction-cooled superconducting magnet was designed, fabricated and tested. The magnet is composed of two coaxial NbTi solenoid coils with identical axial length. Clear bore of the magnet is phi 226 mm. The magnet is installed in a vacuum cryostat with a phi 100 mm room temperature bore. The cryostat is designed in a support frame to be rotatable in a horizontal or vertical direction. A two-stage 4 K Gifford-McMahon (GM) cryocooler is used to cool down the superconducting magnet from room temperature to 4 K. The cooling power of the 4 K cold head is 1 W. A pair of Bi-2223 high temperature superconducting current leads was employed to reduce heat leakage into 4 K cold mass. Total cold mass of the superconducting magnet is about 115 kg. It takes 82 hours to cool down the magnet from 300 K to 4 K directly through the cryocooler. The superconducting magnet reached the designed central magnetic field of 6 T in the warm bore when a 115 A energizing current is applied. The superconducting magnet was stably operating more than 275 hours continuously in full field. Further, a Nb 3 Sn coil insert to be installed, the magnet can provide the maximum center field of 10 T with effective warm bore of phi 100 mm. In this paper, the detailed design, fabrication and test are presented</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2006.873331</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2006-06, Vol.16 (2), p.961-964
issn 1051-8223
1558-2515
language eng
recordid cdi_proquest_miscellaneous_914662296
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Boring
Coaxial components
Coils
Cold heading
COLD WORKING
Conduction-cooled magnet
Cooling
cryocooler
Cryostats
Design. Technologies. Operation analysis. Testing
Electric connection. Cables. Wiring
Electrical engineering. Electrical power engineering
Electromagnets
Electronics
Exact sciences and technology
Integrated circuits
MAGNETIC FIELD
Magnetic fields
Magnetism
MAGNETS
Niobium compounds
quench detection
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
SOLENOIDS
stress analysis
Superconducting coils
Superconducting magnets
SUPERCONDUCTIVITY
SUPERCONDUCTORS
Temperature
Testing
Titanium compounds
Various equipment and components
title Tests on a 6 T Conduction-Cooled Superconducting Magnet
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A18%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tests%20on%20a%206%20T%20Conduction-Cooled%20Superconducting%20Magnet&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Dai,%20Y.&rft.date=2006-06-01&rft.volume=16&rft.issue=2&rft.spage=961&rft.epage=964&rft.pages=961-964&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2006.873331&rft_dat=%3Cproquest_cross%3E914662296%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-5308409df6ed3f70a66cedfedbf56c3c89b9a20ed3c72b1394f41e3c4825b953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=912207681&rft_id=info:pmid/&rft_ieee_id=1643006&rfr_iscdi=true