Loading…

Relating the sequential dynamics of excitatory neural networks to synaptic cellular automata

We have developed a new approach for the description of sequential dynamics of excitatory neural networks. Our approach is based on the dynamics of synapses possessing the short-term plasticity property. We suggest a model of such synapses in the form of a second-order system of nonlinear ODEs. In t...

Full description

Saved in:
Bibliographic Details
Published in:Chaos (Woodbury, N.Y.) N.Y.), 2011-12, Vol.21 (4), p.043124-043124-13
Main Authors: Nekorkin, V. I., Dmitrichev, A. S., Kasatkin, D. V., Afraimovich, V. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c409t-a919192aac07ab6243942305217fb2009cb3128f74a9579d9473110d2f86f61e3
cites cdi_FETCH-LOGICAL-c409t-a919192aac07ab6243942305217fb2009cb3128f74a9579d9473110d2f86f61e3
container_end_page 043124-13
container_issue 4
container_start_page 043124
container_title Chaos (Woodbury, N.Y.)
container_volume 21
creator Nekorkin, V. I.
Dmitrichev, A. S.
Kasatkin, D. V.
Afraimovich, V. S.
description We have developed a new approach for the description of sequential dynamics of excitatory neural networks. Our approach is based on the dynamics of synapses possessing the short-term plasticity property. We suggest a model of such synapses in the form of a second-order system of nonlinear ODEs. In the framework of the model two types of responses are realized—the fast and the slow ones. Under some relations between their timescales a cellular automaton (CA) on the graph of connections is constructed. Such a CA has only a finite number of attractors and all of them are periodic orbits. The attractors of the CA determine the regimes of sequential dynamics of the original neural network, i.e., itineraries along the network and the times of successive firing of neurons in the form of bunches of spikes. We illustrate our approach on the example of a Morris-Lecar neural network.
doi_str_mv 10.1063/1.3657384
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_miscellaneous_915040234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>915040234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-a919192aac07ab6243942305217fb2009cb3128f74a9579d9473110d2f86f61e3</originalsourceid><addsrcrecordid>eNqNkFtLwzAYQIMobk4f_AOSN1HozK2XvAgyvMFAEH0TQtqmGm2bmqTq_r2Z6_RJMXlIIIfDlwPAPkZTjBJ6gqc0iVOasQ0wxijjUZpkZHN5j1mEY4RGYMe5Z4QQJjTeBiMSVkwTPAYPt6qWXreP0D8p6NRrr1qvZQ3LRSsbXThoKqg-Cu2lN3YBW9Xb8Noq_27si4PeQBfIzusCFqqu-1paKHtvGunlLtiqZO3U3nBOwP3F-d3sKprfXF7PzuZRwRD3keQ4bCJlgVKZJ4RRzghFMcFplROEeJFTTLIqZZLHKS85SynGqCRVllQJVnQCDlfezprwAedFo91yGtkq0zvBQwOGCGWBPFqRhTXOWVWJzupG2oXASCxbCiyGloE9GKx93qjym1zHC8DpCnBfebRpf7etM4uQWQyZg-D434K_4Ddjf0DRlRX9BPKRoEk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>915040234</pqid></control><display><type>article</type><title>Relating the sequential dynamics of excitatory neural networks to synaptic cellular automata</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Nekorkin, V. I. ; Dmitrichev, A. S. ; Kasatkin, D. V. ; Afraimovich, V. S.</creator><creatorcontrib>Nekorkin, V. I. ; Dmitrichev, A. S. ; Kasatkin, D. V. ; Afraimovich, V. S.</creatorcontrib><description>We have developed a new approach for the description of sequential dynamics of excitatory neural networks. Our approach is based on the dynamics of synapses possessing the short-term plasticity property. We suggest a model of such synapses in the form of a second-order system of nonlinear ODEs. In the framework of the model two types of responses are realized—the fast and the slow ones. Under some relations between their timescales a cellular automaton (CA) on the graph of connections is constructed. Such a CA has only a finite number of attractors and all of them are periodic orbits. The attractors of the CA determine the regimes of sequential dynamics of the original neural network, i.e., itineraries along the network and the times of successive firing of neurons in the form of bunches of spikes. We illustrate our approach on the example of a Morris-Lecar neural network.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.3657384</identifier><identifier>PMID: 22225361</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Action Potentials - physiology ; Animals ; Biological Clocks - physiology ; Computer Simulation ; Humans ; Models, Neurological ; Nerve Net - physiology ; Neurons - physiology ; Nonlinear Dynamics ; Synaptic Transmission - physiology</subject><ispartof>Chaos (Woodbury, N.Y.), 2011-12, Vol.21 (4), p.043124-043124-13</ispartof><rights>American Institute of Physics</rights><rights>2011 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-a919192aac07ab6243942305217fb2009cb3128f74a9579d9473110d2f86f61e3</citedby><cites>FETCH-LOGICAL-c409t-a919192aac07ab6243942305217fb2009cb3128f74a9579d9473110d2f86f61e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22225361$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nekorkin, V. I.</creatorcontrib><creatorcontrib>Dmitrichev, A. S.</creatorcontrib><creatorcontrib>Kasatkin, D. V.</creatorcontrib><creatorcontrib>Afraimovich, V. S.</creatorcontrib><title>Relating the sequential dynamics of excitatory neural networks to synaptic cellular automata</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>We have developed a new approach for the description of sequential dynamics of excitatory neural networks. Our approach is based on the dynamics of synapses possessing the short-term plasticity property. We suggest a model of such synapses in the form of a second-order system of nonlinear ODEs. In the framework of the model two types of responses are realized—the fast and the slow ones. Under some relations between their timescales a cellular automaton (CA) on the graph of connections is constructed. Such a CA has only a finite number of attractors and all of them are periodic orbits. The attractors of the CA determine the regimes of sequential dynamics of the original neural network, i.e., itineraries along the network and the times of successive firing of neurons in the form of bunches of spikes. We illustrate our approach on the example of a Morris-Lecar neural network.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Biological Clocks - physiology</subject><subject>Computer Simulation</subject><subject>Humans</subject><subject>Models, Neurological</subject><subject>Nerve Net - physiology</subject><subject>Neurons - physiology</subject><subject>Nonlinear Dynamics</subject><subject>Synaptic Transmission - physiology</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkFtLwzAYQIMobk4f_AOSN1HozK2XvAgyvMFAEH0TQtqmGm2bmqTq_r2Z6_RJMXlIIIfDlwPAPkZTjBJ6gqc0iVOasQ0wxijjUZpkZHN5j1mEY4RGYMe5Z4QQJjTeBiMSVkwTPAYPt6qWXreP0D8p6NRrr1qvZQ3LRSsbXThoKqg-Cu2lN3YBW9Xb8Noq_27si4PeQBfIzusCFqqu-1paKHtvGunlLtiqZO3U3nBOwP3F-d3sKprfXF7PzuZRwRD3keQ4bCJlgVKZJ4RRzghFMcFplROEeJFTTLIqZZLHKS85SynGqCRVllQJVnQCDlfezprwAedFo91yGtkq0zvBQwOGCGWBPFqRhTXOWVWJzupG2oXASCxbCiyGloE9GKx93qjym1zHC8DpCnBfebRpf7etM4uQWQyZg-D434K_4Ddjf0DRlRX9BPKRoEk</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Nekorkin, V. I.</creator><creator>Dmitrichev, A. S.</creator><creator>Kasatkin, D. V.</creator><creator>Afraimovich, V. S.</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20111201</creationdate><title>Relating the sequential dynamics of excitatory neural networks to synaptic cellular automata</title><author>Nekorkin, V. I. ; Dmitrichev, A. S. ; Kasatkin, D. V. ; Afraimovich, V. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-a919192aac07ab6243942305217fb2009cb3128f74a9579d9473110d2f86f61e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Biological Clocks - physiology</topic><topic>Computer Simulation</topic><topic>Humans</topic><topic>Models, Neurological</topic><topic>Nerve Net - physiology</topic><topic>Neurons - physiology</topic><topic>Nonlinear Dynamics</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nekorkin, V. I.</creatorcontrib><creatorcontrib>Dmitrichev, A. S.</creatorcontrib><creatorcontrib>Kasatkin, D. V.</creatorcontrib><creatorcontrib>Afraimovich, V. S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nekorkin, V. I.</au><au>Dmitrichev, A. S.</au><au>Kasatkin, D. V.</au><au>Afraimovich, V. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relating the sequential dynamics of excitatory neural networks to synaptic cellular automata</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>21</volume><issue>4</issue><spage>043124</spage><epage>043124-13</epage><pages>043124-043124-13</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>We have developed a new approach for the description of sequential dynamics of excitatory neural networks. Our approach is based on the dynamics of synapses possessing the short-term plasticity property. We suggest a model of such synapses in the form of a second-order system of nonlinear ODEs. In the framework of the model two types of responses are realized—the fast and the slow ones. Under some relations between their timescales a cellular automaton (CA) on the graph of connections is constructed. Such a CA has only a finite number of attractors and all of them are periodic orbits. The attractors of the CA determine the regimes of sequential dynamics of the original neural network, i.e., itineraries along the network and the times of successive firing of neurons in the form of bunches of spikes. We illustrate our approach on the example of a Morris-Lecar neural network.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>22225361</pmid><doi>10.1063/1.3657384</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2011-12, Vol.21 (4), p.043124-043124-13
issn 1054-1500
1089-7682
language eng
recordid cdi_proquest_miscellaneous_915040234
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Action Potentials - physiology
Animals
Biological Clocks - physiology
Computer Simulation
Humans
Models, Neurological
Nerve Net - physiology
Neurons - physiology
Nonlinear Dynamics
Synaptic Transmission - physiology
title Relating the sequential dynamics of excitatory neural networks to synaptic cellular automata
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A16%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relating%20the%20sequential%20dynamics%20of%20excitatory%20neural%20networks%20to%20synaptic%20cellular%20automata&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Nekorkin,%20V.%20I.&rft.date=2011-12-01&rft.volume=21&rft.issue=4&rft.spage=043124&rft.epage=043124-13&rft.pages=043124-043124-13&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.3657384&rft_dat=%3Cproquest_scita%3E915040234%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-a919192aac07ab6243942305217fb2009cb3128f74a9579d9473110d2f86f61e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=915040234&rft_id=info:pmid/22225361&rfr_iscdi=true