Loading…
Relating the sequential dynamics of excitatory neural networks to synaptic cellular automata
We have developed a new approach for the description of sequential dynamics of excitatory neural networks. Our approach is based on the dynamics of synapses possessing the short-term plasticity property. We suggest a model of such synapses in the form of a second-order system of nonlinear ODEs. In t...
Saved in:
Published in: | Chaos (Woodbury, N.Y.) N.Y.), 2011-12, Vol.21 (4), p.043124-043124-13 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c409t-a919192aac07ab6243942305217fb2009cb3128f74a9579d9473110d2f86f61e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c409t-a919192aac07ab6243942305217fb2009cb3128f74a9579d9473110d2f86f61e3 |
container_end_page | 043124-13 |
container_issue | 4 |
container_start_page | 043124 |
container_title | Chaos (Woodbury, N.Y.) |
container_volume | 21 |
creator | Nekorkin, V. I. Dmitrichev, A. S. Kasatkin, D. V. Afraimovich, V. S. |
description | We have developed a new approach for the description of sequential dynamics of excitatory neural networks. Our approach is based on the dynamics of synapses possessing the short-term plasticity property. We suggest a model of such synapses in the form of a second-order system of nonlinear ODEs. In the framework of the model two types of responses are realized—the fast and the slow ones. Under some relations between their timescales a cellular automaton (CA) on the graph of connections is constructed. Such a CA has only a finite number of attractors and all of them are periodic orbits. The attractors of the CA determine the regimes of sequential dynamics of the original neural network, i.e., itineraries along the network and the times of successive firing of neurons in the form of bunches of spikes. We illustrate our approach on the example of a Morris-Lecar neural network. |
doi_str_mv | 10.1063/1.3657384 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_miscellaneous_915040234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>915040234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-a919192aac07ab6243942305217fb2009cb3128f74a9579d9473110d2f86f61e3</originalsourceid><addsrcrecordid>eNqNkFtLwzAYQIMobk4f_AOSN1HozK2XvAgyvMFAEH0TQtqmGm2bmqTq_r2Z6_RJMXlIIIfDlwPAPkZTjBJ6gqc0iVOasQ0wxijjUZpkZHN5j1mEY4RGYMe5Z4QQJjTeBiMSVkwTPAYPt6qWXreP0D8p6NRrr1qvZQ3LRSsbXThoKqg-Cu2lN3YBW9Xb8Noq_27si4PeQBfIzusCFqqu-1paKHtvGunlLtiqZO3U3nBOwP3F-d3sKprfXF7PzuZRwRD3keQ4bCJlgVKZJ4RRzghFMcFplROEeJFTTLIqZZLHKS85SynGqCRVllQJVnQCDlfezprwAedFo91yGtkq0zvBQwOGCGWBPFqRhTXOWVWJzupG2oXASCxbCiyGloE9GKx93qjym1zHC8DpCnBfebRpf7etM4uQWQyZg-D434K_4Ddjf0DRlRX9BPKRoEk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>915040234</pqid></control><display><type>article</type><title>Relating the sequential dynamics of excitatory neural networks to synaptic cellular automata</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Nekorkin, V. I. ; Dmitrichev, A. S. ; Kasatkin, D. V. ; Afraimovich, V. S.</creator><creatorcontrib>Nekorkin, V. I. ; Dmitrichev, A. S. ; Kasatkin, D. V. ; Afraimovich, V. S.</creatorcontrib><description>We have developed a new approach for the description of sequential dynamics of excitatory neural networks. Our approach is based on the dynamics of synapses possessing the short-term plasticity property. We suggest a model of such synapses in the form of a second-order system of nonlinear ODEs. In the framework of the model two types of responses are realized—the fast and the slow ones. Under some relations between their timescales a cellular automaton (CA) on the graph of connections is constructed. Such a CA has only a finite number of attractors and all of them are periodic orbits. The attractors of the CA determine the regimes of sequential dynamics of the original neural network, i.e., itineraries along the network and the times of successive firing of neurons in the form of bunches of spikes. We illustrate our approach on the example of a Morris-Lecar neural network.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.3657384</identifier><identifier>PMID: 22225361</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Action Potentials - physiology ; Animals ; Biological Clocks - physiology ; Computer Simulation ; Humans ; Models, Neurological ; Nerve Net - physiology ; Neurons - physiology ; Nonlinear Dynamics ; Synaptic Transmission - physiology</subject><ispartof>Chaos (Woodbury, N.Y.), 2011-12, Vol.21 (4), p.043124-043124-13</ispartof><rights>American Institute of Physics</rights><rights>2011 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-a919192aac07ab6243942305217fb2009cb3128f74a9579d9473110d2f86f61e3</citedby><cites>FETCH-LOGICAL-c409t-a919192aac07ab6243942305217fb2009cb3128f74a9579d9473110d2f86f61e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22225361$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nekorkin, V. I.</creatorcontrib><creatorcontrib>Dmitrichev, A. S.</creatorcontrib><creatorcontrib>Kasatkin, D. V.</creatorcontrib><creatorcontrib>Afraimovich, V. S.</creatorcontrib><title>Relating the sequential dynamics of excitatory neural networks to synaptic cellular automata</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>We have developed a new approach for the description of sequential dynamics of excitatory neural networks. Our approach is based on the dynamics of synapses possessing the short-term plasticity property. We suggest a model of such synapses in the form of a second-order system of nonlinear ODEs. In the framework of the model two types of responses are realized—the fast and the slow ones. Under some relations between their timescales a cellular automaton (CA) on the graph of connections is constructed. Such a CA has only a finite number of attractors and all of them are periodic orbits. The attractors of the CA determine the regimes of sequential dynamics of the original neural network, i.e., itineraries along the network and the times of successive firing of neurons in the form of bunches of spikes. We illustrate our approach on the example of a Morris-Lecar neural network.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Biological Clocks - physiology</subject><subject>Computer Simulation</subject><subject>Humans</subject><subject>Models, Neurological</subject><subject>Nerve Net - physiology</subject><subject>Neurons - physiology</subject><subject>Nonlinear Dynamics</subject><subject>Synaptic Transmission - physiology</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkFtLwzAYQIMobk4f_AOSN1HozK2XvAgyvMFAEH0TQtqmGm2bmqTq_r2Z6_RJMXlIIIfDlwPAPkZTjBJ6gqc0iVOasQ0wxijjUZpkZHN5j1mEY4RGYMe5Z4QQJjTeBiMSVkwTPAYPt6qWXreP0D8p6NRrr1qvZQ3LRSsbXThoKqg-Cu2lN3YBW9Xb8Noq_27si4PeQBfIzusCFqqu-1paKHtvGunlLtiqZO3U3nBOwP3F-d3sKprfXF7PzuZRwRD3keQ4bCJlgVKZJ4RRzghFMcFplROEeJFTTLIqZZLHKS85SynGqCRVllQJVnQCDlfezprwAedFo91yGtkq0zvBQwOGCGWBPFqRhTXOWVWJzupG2oXASCxbCiyGloE9GKx93qjym1zHC8DpCnBfebRpf7etM4uQWQyZg-D434K_4Ddjf0DRlRX9BPKRoEk</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Nekorkin, V. I.</creator><creator>Dmitrichev, A. S.</creator><creator>Kasatkin, D. V.</creator><creator>Afraimovich, V. S.</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20111201</creationdate><title>Relating the sequential dynamics of excitatory neural networks to synaptic cellular automata</title><author>Nekorkin, V. I. ; Dmitrichev, A. S. ; Kasatkin, D. V. ; Afraimovich, V. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-a919192aac07ab6243942305217fb2009cb3128f74a9579d9473110d2f86f61e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Biological Clocks - physiology</topic><topic>Computer Simulation</topic><topic>Humans</topic><topic>Models, Neurological</topic><topic>Nerve Net - physiology</topic><topic>Neurons - physiology</topic><topic>Nonlinear Dynamics</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nekorkin, V. I.</creatorcontrib><creatorcontrib>Dmitrichev, A. S.</creatorcontrib><creatorcontrib>Kasatkin, D. V.</creatorcontrib><creatorcontrib>Afraimovich, V. S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nekorkin, V. I.</au><au>Dmitrichev, A. S.</au><au>Kasatkin, D. V.</au><au>Afraimovich, V. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relating the sequential dynamics of excitatory neural networks to synaptic cellular automata</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>21</volume><issue>4</issue><spage>043124</spage><epage>043124-13</epage><pages>043124-043124-13</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>We have developed a new approach for the description of sequential dynamics of excitatory neural networks. Our approach is based on the dynamics of synapses possessing the short-term plasticity property. We suggest a model of such synapses in the form of a second-order system of nonlinear ODEs. In the framework of the model two types of responses are realized—the fast and the slow ones. Under some relations between their timescales a cellular automaton (CA) on the graph of connections is constructed. Such a CA has only a finite number of attractors and all of them are periodic orbits. The attractors of the CA determine the regimes of sequential dynamics of the original neural network, i.e., itineraries along the network and the times of successive firing of neurons in the form of bunches of spikes. We illustrate our approach on the example of a Morris-Lecar neural network.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>22225361</pmid><doi>10.1063/1.3657384</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-1500 |
ispartof | Chaos (Woodbury, N.Y.), 2011-12, Vol.21 (4), p.043124-043124-13 |
issn | 1054-1500 1089-7682 |
language | eng |
recordid | cdi_proquest_miscellaneous_915040234 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Action Potentials - physiology Animals Biological Clocks - physiology Computer Simulation Humans Models, Neurological Nerve Net - physiology Neurons - physiology Nonlinear Dynamics Synaptic Transmission - physiology |
title | Relating the sequential dynamics of excitatory neural networks to synaptic cellular automata |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A16%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relating%20the%20sequential%20dynamics%20of%20excitatory%20neural%20networks%20to%20synaptic%20cellular%20automata&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Nekorkin,%20V.%20I.&rft.date=2011-12-01&rft.volume=21&rft.issue=4&rft.spage=043124&rft.epage=043124-13&rft.pages=043124-043124-13&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.3657384&rft_dat=%3Cproquest_scita%3E915040234%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-a919192aac07ab6243942305217fb2009cb3128f74a9579d9473110d2f86f61e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=915040234&rft_id=info:pmid/22225361&rfr_iscdi=true |