Loading…

Probabilistic inference of regularisation in non-rigid registration

A long-standing issue in non-rigid image registration is the choice of the level of regularisation. Regularisation is necessary to preserve the smoothness of the registration and penalise against unnecessary complexity. The vast majority of existing registration methods use a fixed level of regulari...

Full description

Saved in:
Bibliographic Details
Published in:NeuroImage (Orlando, Fla.) Fla.), 2012-02, Vol.59 (3), p.2438-2451
Main Authors: Simpson, Ivor J.A., Schnabel, Julia A., Groves, Adrian R., Andersson, Jesper L.R., Woolrich, Mark W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c401t-5d540b656216ada6ca5fe93a4c332337b4eefbd3cece6b1b3164b6b15944dfca3
cites cdi_FETCH-LOGICAL-c401t-5d540b656216ada6ca5fe93a4c332337b4eefbd3cece6b1b3164b6b15944dfca3
container_end_page 2451
container_issue 3
container_start_page 2438
container_title NeuroImage (Orlando, Fla.)
container_volume 59
creator Simpson, Ivor J.A.
Schnabel, Julia A.
Groves, Adrian R.
Andersson, Jesper L.R.
Woolrich, Mark W.
description A long-standing issue in non-rigid image registration is the choice of the level of regularisation. Regularisation is necessary to preserve the smoothness of the registration and penalise against unnecessary complexity. The vast majority of existing registration methods use a fixed level of regularisation, which is typically hand-tuned by a user to provide “nice" results. However, the optimal level of regularisation will depend on the data which is being processed; lower signal-to-noise ratios require higher regularisation to avoid registering image noise as well as features, and different pairs of images require registrations of varying complexity depending on their anatomical similarity. In this paper we present a probabilistic registration framework that infers the level of regularisation from the data. An additional benefit of this proposed probabilistic framework is that estimates of the registration uncertainty are obtained. This framework has been implemented using a free-form deformation transformation model, although it would be generically applicable to a range of transformation models. We demonstrate our registration framework on the application of inter-subject brain registration of healthy control subjects from the NIREP database. In our results we show that our framework appropriately adapts the level of regularisation in the presence of noise, and that inferring regularisation on an individual basis leads to a reduction in model over-fitting as measured by image folding while providing a similar level of overlap. ► Infers the level of regularisation in non-rigid registration using Bayes. ► Adapts regularisation to signal-to-noise ratios and anatomical variability. ► Provides a spatial map of the uncertainty in the registration.
doi_str_mv 10.1016/j.neuroimage.2011.09.002
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_915380464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S105381191101041X</els_id><sourcerecordid>915380464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-5d540b656216ada6ca5fe93a4c332337b4eefbd3cece6b1b3164b6b15944dfca3</originalsourceid><addsrcrecordid>eNqFkE2L1TAUhoMozof-BSm4cNV6TvPRZjle1BkY0IWuQ5KeXnLpbcakHfDfm3rnA9y4yoH3eXMOD2MVQoOA6uOhmWlNMRztnpoWEBvQDUD7gp0jaFlr2bUvt1nyukfUZ-wi5wMAaBT9a3bWoua669pztvueorMuTCEvwVdhHinR7KmKY5Vov042hWyXEOeSVXOc6xT2Ydiy0kh_kzfs1WinTG8f3kv288vnH7vr-vbb15vd1W3tBeBSy0EKcEqqFpUdrPJWjqS5FZ7zlvPOCaLRDdyTJ-XQcVTClUFqIYbRW37JPpz-vUvx10p5MceQPU2TnSmu2WiUvAehRCHf_0Me4prmcpxBKToNXa-gUP2J8inmnGg0d6koTb8Ngtk8m4N59mw2zwa0KZ5L9d3DgtUdaXgqPootwKcTQEXIfaBksg-b2CEk8osZYvj_lj_leZSF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1547907860</pqid></control><display><type>article</type><title>Probabilistic inference of regularisation in non-rigid registration</title><source>ScienceDirect Freedom Collection</source><creator>Simpson, Ivor J.A. ; Schnabel, Julia A. ; Groves, Adrian R. ; Andersson, Jesper L.R. ; Woolrich, Mark W.</creator><creatorcontrib>Simpson, Ivor J.A. ; Schnabel, Julia A. ; Groves, Adrian R. ; Andersson, Jesper L.R. ; Woolrich, Mark W.</creatorcontrib><description>A long-standing issue in non-rigid image registration is the choice of the level of regularisation. Regularisation is necessary to preserve the smoothness of the registration and penalise against unnecessary complexity. The vast majority of existing registration methods use a fixed level of regularisation, which is typically hand-tuned by a user to provide “nice" results. However, the optimal level of regularisation will depend on the data which is being processed; lower signal-to-noise ratios require higher regularisation to avoid registering image noise as well as features, and different pairs of images require registrations of varying complexity depending on their anatomical similarity. In this paper we present a probabilistic registration framework that infers the level of regularisation from the data. An additional benefit of this proposed probabilistic framework is that estimates of the registration uncertainty are obtained. This framework has been implemented using a free-form deformation transformation model, although it would be generically applicable to a range of transformation models. We demonstrate our registration framework on the application of inter-subject brain registration of healthy control subjects from the NIREP database. In our results we show that our framework appropriately adapts the level of regularisation in the presence of noise, and that inferring regularisation on an individual basis leads to a reduction in model over-fitting as measured by image folding while providing a similar level of overlap. ► Infers the level of regularisation in non-rigid registration using Bayes. ► Adapts regularisation to signal-to-noise ratios and anatomical variability. ► Provides a spatial map of the uncertainty in the registration.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2011.09.002</identifier><identifier>PMID: 21939772</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Accuracy ; Algorithms ; Bayes Theorem ; Bayesian analysis ; Bayesian modelling ; Brain - anatomy &amp; histology ; Deformation ; Humans ; Image Processing, Computer-Assisted - methods ; Image Processing, Computer-Assisted - statistics &amp; numerical data ; Imaging, Three-Dimensional ; Magnetic Resonance Imaging ; Models, Statistical ; Noise ; Normal Distribution ; Pattern Recognition, Automated ; Registration ; Regularisation ; Signal-To-Noise Ratio</subject><ispartof>NeuroImage (Orlando, Fla.), 2012-02, Vol.59 (3), p.2438-2451</ispartof><rights>2011 Elsevier Inc.</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Feb 1, 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-5d540b656216ada6ca5fe93a4c332337b4eefbd3cece6b1b3164b6b15944dfca3</citedby><cites>FETCH-LOGICAL-c401t-5d540b656216ada6ca5fe93a4c332337b4eefbd3cece6b1b3164b6b15944dfca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21939772$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Simpson, Ivor J.A.</creatorcontrib><creatorcontrib>Schnabel, Julia A.</creatorcontrib><creatorcontrib>Groves, Adrian R.</creatorcontrib><creatorcontrib>Andersson, Jesper L.R.</creatorcontrib><creatorcontrib>Woolrich, Mark W.</creatorcontrib><title>Probabilistic inference of regularisation in non-rigid registration</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>A long-standing issue in non-rigid image registration is the choice of the level of regularisation. Regularisation is necessary to preserve the smoothness of the registration and penalise against unnecessary complexity. The vast majority of existing registration methods use a fixed level of regularisation, which is typically hand-tuned by a user to provide “nice" results. However, the optimal level of regularisation will depend on the data which is being processed; lower signal-to-noise ratios require higher regularisation to avoid registering image noise as well as features, and different pairs of images require registrations of varying complexity depending on their anatomical similarity. In this paper we present a probabilistic registration framework that infers the level of regularisation from the data. An additional benefit of this proposed probabilistic framework is that estimates of the registration uncertainty are obtained. This framework has been implemented using a free-form deformation transformation model, although it would be generically applicable to a range of transformation models. We demonstrate our registration framework on the application of inter-subject brain registration of healthy control subjects from the NIREP database. In our results we show that our framework appropriately adapts the level of regularisation in the presence of noise, and that inferring regularisation on an individual basis leads to a reduction in model over-fitting as measured by image folding while providing a similar level of overlap. ► Infers the level of regularisation in non-rigid registration using Bayes. ► Adapts regularisation to signal-to-noise ratios and anatomical variability. ► Provides a spatial map of the uncertainty in the registration.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Bayesian modelling</subject><subject>Brain - anatomy &amp; histology</subject><subject>Deformation</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image Processing, Computer-Assisted - statistics &amp; numerical data</subject><subject>Imaging, Three-Dimensional</subject><subject>Magnetic Resonance Imaging</subject><subject>Models, Statistical</subject><subject>Noise</subject><subject>Normal Distribution</subject><subject>Pattern Recognition, Automated</subject><subject>Registration</subject><subject>Regularisation</subject><subject>Signal-To-Noise Ratio</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE2L1TAUhoMozof-BSm4cNV6TvPRZjle1BkY0IWuQ5KeXnLpbcakHfDfm3rnA9y4yoH3eXMOD2MVQoOA6uOhmWlNMRztnpoWEBvQDUD7gp0jaFlr2bUvt1nyukfUZ-wi5wMAaBT9a3bWoua669pztvueorMuTCEvwVdhHinR7KmKY5Vov042hWyXEOeSVXOc6xT2Ydiy0kh_kzfs1WinTG8f3kv288vnH7vr-vbb15vd1W3tBeBSy0EKcEqqFpUdrPJWjqS5FZ7zlvPOCaLRDdyTJ-XQcVTClUFqIYbRW37JPpz-vUvx10p5MceQPU2TnSmu2WiUvAehRCHf_0Me4prmcpxBKToNXa-gUP2J8inmnGg0d6koTb8Ngtk8m4N59mw2zwa0KZ5L9d3DgtUdaXgqPootwKcTQEXIfaBksg-b2CEk8osZYvj_lj_leZSF</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Simpson, Ivor J.A.</creator><creator>Schnabel, Julia A.</creator><creator>Groves, Adrian R.</creator><creator>Andersson, Jesper L.R.</creator><creator>Woolrich, Mark W.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20120201</creationdate><title>Probabilistic inference of regularisation in non-rigid registration</title><author>Simpson, Ivor J.A. ; Schnabel, Julia A. ; Groves, Adrian R. ; Andersson, Jesper L.R. ; Woolrich, Mark W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-5d540b656216ada6ca5fe93a4c332337b4eefbd3cece6b1b3164b6b15944dfca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Bayesian modelling</topic><topic>Brain - anatomy &amp; histology</topic><topic>Deformation</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image Processing, Computer-Assisted - statistics &amp; numerical data</topic><topic>Imaging, Three-Dimensional</topic><topic>Magnetic Resonance Imaging</topic><topic>Models, Statistical</topic><topic>Noise</topic><topic>Normal Distribution</topic><topic>Pattern Recognition, Automated</topic><topic>Registration</topic><topic>Regularisation</topic><topic>Signal-To-Noise Ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simpson, Ivor J.A.</creatorcontrib><creatorcontrib>Schnabel, Julia A.</creatorcontrib><creatorcontrib>Groves, Adrian R.</creatorcontrib><creatorcontrib>Andersson, Jesper L.R.</creatorcontrib><creatorcontrib>Woolrich, Mark W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simpson, Ivor J.A.</au><au>Schnabel, Julia A.</au><au>Groves, Adrian R.</au><au>Andersson, Jesper L.R.</au><au>Woolrich, Mark W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic inference of regularisation in non-rigid registration</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2012-02-01</date><risdate>2012</risdate><volume>59</volume><issue>3</issue><spage>2438</spage><epage>2451</epage><pages>2438-2451</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>A long-standing issue in non-rigid image registration is the choice of the level of regularisation. Regularisation is necessary to preserve the smoothness of the registration and penalise against unnecessary complexity. The vast majority of existing registration methods use a fixed level of regularisation, which is typically hand-tuned by a user to provide “nice" results. However, the optimal level of regularisation will depend on the data which is being processed; lower signal-to-noise ratios require higher regularisation to avoid registering image noise as well as features, and different pairs of images require registrations of varying complexity depending on their anatomical similarity. In this paper we present a probabilistic registration framework that infers the level of regularisation from the data. An additional benefit of this proposed probabilistic framework is that estimates of the registration uncertainty are obtained. This framework has been implemented using a free-form deformation transformation model, although it would be generically applicable to a range of transformation models. We demonstrate our registration framework on the application of inter-subject brain registration of healthy control subjects from the NIREP database. In our results we show that our framework appropriately adapts the level of regularisation in the presence of noise, and that inferring regularisation on an individual basis leads to a reduction in model over-fitting as measured by image folding while providing a similar level of overlap. ► Infers the level of regularisation in non-rigid registration using Bayes. ► Adapts regularisation to signal-to-noise ratios and anatomical variability. ► Provides a spatial map of the uncertainty in the registration.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21939772</pmid><doi>10.1016/j.neuroimage.2011.09.002</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2012-02, Vol.59 (3), p.2438-2451
issn 1053-8119
1095-9572
language eng
recordid cdi_proquest_miscellaneous_915380464
source ScienceDirect Freedom Collection
subjects Accuracy
Algorithms
Bayes Theorem
Bayesian analysis
Bayesian modelling
Brain - anatomy & histology
Deformation
Humans
Image Processing, Computer-Assisted - methods
Image Processing, Computer-Assisted - statistics & numerical data
Imaging, Three-Dimensional
Magnetic Resonance Imaging
Models, Statistical
Noise
Normal Distribution
Pattern Recognition, Automated
Registration
Regularisation
Signal-To-Noise Ratio
title Probabilistic inference of regularisation in non-rigid registration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A43%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20inference%20of%20regularisation%20in%20non-rigid%20registration&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Simpson,%20Ivor%20J.A.&rft.date=2012-02-01&rft.volume=59&rft.issue=3&rft.spage=2438&rft.epage=2451&rft.pages=2438-2451&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2011.09.002&rft_dat=%3Cproquest_cross%3E915380464%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c401t-5d540b656216ada6ca5fe93a4c332337b4eefbd3cece6b1b3164b6b15944dfca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1547907860&rft_id=info:pmid/21939772&rfr_iscdi=true