Loading…
Influence of customized composite resin fibreglass posts on the mechanics of restored treated teeth
Anchieta RB, Rocha EP, Almeida EO, Freitas Junior AC, Martin Junior M, Martini AP, Archangelo CM, Ko C‐C. Influence of customized composite resin fibreglass posts on the mechanics of restored treated teeth. International Endodontic Journal, 45, 146–155, 2012. Aim To evaluate the mechanical behaviou...
Saved in:
Published in: | International endodontic journal 2012-02, Vol.45 (2), p.146-155 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4395-bd8625235f01e24ee17eab5474a7d05a96d83b694c860f6f56dba0cdcb1cb5ab3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4395-bd8625235f01e24ee17eab5474a7d05a96d83b694c860f6f56dba0cdcb1cb5ab3 |
container_end_page | 155 |
container_issue | 2 |
container_start_page | 146 |
container_title | International endodontic journal |
container_volume | 45 |
creator | Anchieta, R. B. Rocha, E. P. Almeida, E. O. Freitas Junior, A. C. Martin Junior, M. Martini, A. P. Archangelo, C. M. Ko, C.-C. |
description | Anchieta RB, Rocha EP, Almeida EO, Freitas Junior AC, Martin Junior M, Martini AP, Archangelo CM, Ko C‐C. Influence of customized composite resin fibreglass posts on the mechanics of restored treated teeth. International Endodontic Journal, 45, 146–155, 2012.
Aim To evaluate the mechanical behaviour of the dentine/cement/post interface of a maxillary central incisor using the finite element method and to compare the stresses exerted using conventional or customized post cementation techniques.
Methodology Four models of a maxillary central incisor were created using fibreglass posts cemented with several techniques: FGP1, a 1‐mm‐diameter conventionally cemented post; CFGP1, a 1‐mm‐diameter customized composite resin post; FGP2, a 2‐mm‐diameter conventionally cemented post; CFGP2, a 2‐mm‐diameter customized composite resin post. A distributed load of 1N was applied to the lingual aspect of the tooth at 45° to its long axis. Additionally, polymerization shrinkage of 1% was simulated for the resin cement. The surface of the periodontal ligament was fixed in the three axes (X =Y = Z = 0). The maximum principal stress (σmax), minimum principal stress (σmin), equivalent von Mises stress (σvM) and shear stress (σshear) were calculated for the dentine/cement/post interface using finite element software.
Results The peak of σmax for the cement layer occurred first in CFGP1 (1.77 MPa), followed by CFGP2 (0.99), FGP2 (0.44) and FGP1 (0.2). The shrinkage stress (σvM) of the cement layer occurred as follows: FGP1 (35 MPa), FGP2 (34), CFGP1 (30.7) and CFGP2 (30.1).
Conclusions Under incisal loading, the cement layer of customized posts had higher stress concentrations. The conventional posts showed higher stress because of polymerization shrinkage. |
doi_str_mv | 10.1111/j.1365-2591.2011.01955.x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_916147718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>916147718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4395-bd8625235f01e24ee17eab5474a7d05a96d83b694c860f6f56dba0cdcb1cb5ab3</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0EokvhLyDf4JJ0bMdxcuCAqrJstYJLgaNlOxM2Sz4W21G3_HoctuwR4ctY9vOMrXcIoQxyltbVPmeilBmXNcs5MJYDq6XMj0_I6nzxlKyAFSLjVSUvyIsQ9gAgQbDn5IJzUFCBWBG3Gdt-xtEhnVrq5hCnofuFDXXTcJhCF5F6DN1I2856_N6bEGg6j4FOI407pAO6nRk7FxY_oXHyyY4eTVwqYty9JM9a0wd89VgvyZcPN3fXH7Pt5_Xm-v02c4WoZWabquSSC9kCQ14gMoXGykIVRjUgTV02lbBlXbiqhLZsZdlYA65xljkrjRWX5M2p78FPP-f0FT10wWHfmxGnOeialaxQilWJfPtPkgGvlnxqSGh1Qp2fQvDY6oPvBuMfEqSXYei9XjLXS-Z6GYb-Mwx9TOrrx1dmO2BzFv-mn4B3J-C-6_Hhvxvrzc3tskt-dvK7EPF49o3_oUsllNTfPq21XKu7rwVsNYjf70yoWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1028080390</pqid></control><display><type>article</type><title>Influence of customized composite resin fibreglass posts on the mechanics of restored treated teeth</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Anchieta, R. B. ; Rocha, E. P. ; Almeida, E. O. ; Freitas Junior, A. C. ; Martin Junior, M. ; Martini, A. P. ; Archangelo, C. M. ; Ko, C.-C.</creator><creatorcontrib>Anchieta, R. B. ; Rocha, E. P. ; Almeida, E. O. ; Freitas Junior, A. C. ; Martin Junior, M. ; Martini, A. P. ; Archangelo, C. M. ; Ko, C.-C.</creatorcontrib><description>Anchieta RB, Rocha EP, Almeida EO, Freitas Junior AC, Martin Junior M, Martini AP, Archangelo CM, Ko C‐C. Influence of customized composite resin fibreglass posts on the mechanics of restored treated teeth. International Endodontic Journal, 45, 146–155, 2012.
Aim To evaluate the mechanical behaviour of the dentine/cement/post interface of a maxillary central incisor using the finite element method and to compare the stresses exerted using conventional or customized post cementation techniques.
Methodology Four models of a maxillary central incisor were created using fibreglass posts cemented with several techniques: FGP1, a 1‐mm‐diameter conventionally cemented post; CFGP1, a 1‐mm‐diameter customized composite resin post; FGP2, a 2‐mm‐diameter conventionally cemented post; CFGP2, a 2‐mm‐diameter customized composite resin post. A distributed load of 1N was applied to the lingual aspect of the tooth at 45° to its long axis. Additionally, polymerization shrinkage of 1% was simulated for the resin cement. The surface of the periodontal ligament was fixed in the three axes (X =Y = Z = 0). The maximum principal stress (σmax), minimum principal stress (σmin), equivalent von Mises stress (σvM) and shear stress (σshear) were calculated for the dentine/cement/post interface using finite element software.
Results The peak of σmax for the cement layer occurred first in CFGP1 (1.77 MPa), followed by CFGP2 (0.99), FGP2 (0.44) and FGP1 (0.2). The shrinkage stress (σvM) of the cement layer occurred as follows: FGP1 (35 MPa), FGP2 (34), CFGP1 (30.7) and CFGP2 (30.1).
Conclusions Under incisal loading, the cement layer of customized posts had higher stress concentrations. The conventional posts showed higher stress because of polymerization shrinkage.</description><identifier>ISSN: 0143-2885</identifier><identifier>EISSN: 1365-2591</identifier><identifier>DOI: 10.1111/j.1365-2591.2011.01955.x</identifier><identifier>PMID: 22070803</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Adenylate cyclase ; Atrophy ; Biomechanical Phenomena ; Cement ; Cementation - methods ; Composite Resins - chemistry ; Computer programs ; Computer Simulation ; Dental Materials - chemistry ; Dental Prosthesis Design ; Dental Pulp Cavity - ultrastructure ; Dentin - ultrastructure ; Dentistry ; Elastic Modulus ; fibreglass post ; Finite Element Analysis ; Glass - chemistry ; Humans ; Image Processing, Computer-Assisted - methods ; Imaging, Three-Dimensional - methods ; Incisor - ultrastructure ; Incisors ; Materials Testing ; Mathematical models ; Maxilla ; Mechanical properties ; Mechanical stimuli ; mechanics ; Models, Biological ; periodontal ligament ; Periodontal Ligament - physiology ; Polymerization ; Post and Core Technique - instrumentation ; Resin Cements - chemistry ; resin-dentine interface ; Resins ; Retinoblastoma protein ; root canal ; Shear Strength ; software ; Stress ; Stress, Mechanical ; Surface Properties ; Teeth ; X-Ray Microtomography - methods</subject><ispartof>International endodontic journal, 2012-02, Vol.45 (2), p.146-155</ispartof><rights>2011 International Endodontic Journal</rights><rights>2011 International Endodontic Journal.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4395-bd8625235f01e24ee17eab5474a7d05a96d83b694c860f6f56dba0cdcb1cb5ab3</citedby><cites>FETCH-LOGICAL-c4395-bd8625235f01e24ee17eab5474a7d05a96d83b694c860f6f56dba0cdcb1cb5ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22070803$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anchieta, R. B.</creatorcontrib><creatorcontrib>Rocha, E. P.</creatorcontrib><creatorcontrib>Almeida, E. O.</creatorcontrib><creatorcontrib>Freitas Junior, A. C.</creatorcontrib><creatorcontrib>Martin Junior, M.</creatorcontrib><creatorcontrib>Martini, A. P.</creatorcontrib><creatorcontrib>Archangelo, C. M.</creatorcontrib><creatorcontrib>Ko, C.-C.</creatorcontrib><title>Influence of customized composite resin fibreglass posts on the mechanics of restored treated teeth</title><title>International endodontic journal</title><addtitle>Int Endod J</addtitle><description>Anchieta RB, Rocha EP, Almeida EO, Freitas Junior AC, Martin Junior M, Martini AP, Archangelo CM, Ko C‐C. Influence of customized composite resin fibreglass posts on the mechanics of restored treated teeth. International Endodontic Journal, 45, 146–155, 2012.
Aim To evaluate the mechanical behaviour of the dentine/cement/post interface of a maxillary central incisor using the finite element method and to compare the stresses exerted using conventional or customized post cementation techniques.
Methodology Four models of a maxillary central incisor were created using fibreglass posts cemented with several techniques: FGP1, a 1‐mm‐diameter conventionally cemented post; CFGP1, a 1‐mm‐diameter customized composite resin post; FGP2, a 2‐mm‐diameter conventionally cemented post; CFGP2, a 2‐mm‐diameter customized composite resin post. A distributed load of 1N was applied to the lingual aspect of the tooth at 45° to its long axis. Additionally, polymerization shrinkage of 1% was simulated for the resin cement. The surface of the periodontal ligament was fixed in the three axes (X =Y = Z = 0). The maximum principal stress (σmax), minimum principal stress (σmin), equivalent von Mises stress (σvM) and shear stress (σshear) were calculated for the dentine/cement/post interface using finite element software.
Results The peak of σmax for the cement layer occurred first in CFGP1 (1.77 MPa), followed by CFGP2 (0.99), FGP2 (0.44) and FGP1 (0.2). The shrinkage stress (σvM) of the cement layer occurred as follows: FGP1 (35 MPa), FGP2 (34), CFGP1 (30.7) and CFGP2 (30.1).
Conclusions Under incisal loading, the cement layer of customized posts had higher stress concentrations. The conventional posts showed higher stress because of polymerization shrinkage.</description><subject>Adenylate cyclase</subject><subject>Atrophy</subject><subject>Biomechanical Phenomena</subject><subject>Cement</subject><subject>Cementation - methods</subject><subject>Composite Resins - chemistry</subject><subject>Computer programs</subject><subject>Computer Simulation</subject><subject>Dental Materials - chemistry</subject><subject>Dental Prosthesis Design</subject><subject>Dental Pulp Cavity - ultrastructure</subject><subject>Dentin - ultrastructure</subject><subject>Dentistry</subject><subject>Elastic Modulus</subject><subject>fibreglass post</subject><subject>Finite Element Analysis</subject><subject>Glass - chemistry</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Incisor - ultrastructure</subject><subject>Incisors</subject><subject>Materials Testing</subject><subject>Mathematical models</subject><subject>Maxilla</subject><subject>Mechanical properties</subject><subject>Mechanical stimuli</subject><subject>mechanics</subject><subject>Models, Biological</subject><subject>periodontal ligament</subject><subject>Periodontal Ligament - physiology</subject><subject>Polymerization</subject><subject>Post and Core Technique - instrumentation</subject><subject>Resin Cements - chemistry</subject><subject>resin-dentine interface</subject><subject>Resins</subject><subject>Retinoblastoma protein</subject><subject>root canal</subject><subject>Shear Strength</subject><subject>software</subject><subject>Stress</subject><subject>Stress, Mechanical</subject><subject>Surface Properties</subject><subject>Teeth</subject><subject>X-Ray Microtomography - methods</subject><issn>0143-2885</issn><issn>1365-2591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkU1v1DAQhi0EokvhLyDf4JJ0bMdxcuCAqrJstYJLgaNlOxM2Sz4W21G3_HoctuwR4ctY9vOMrXcIoQxyltbVPmeilBmXNcs5MJYDq6XMj0_I6nzxlKyAFSLjVSUvyIsQ9gAgQbDn5IJzUFCBWBG3Gdt-xtEhnVrq5hCnofuFDXXTcJhCF5F6DN1I2856_N6bEGg6j4FOI407pAO6nRk7FxY_oXHyyY4eTVwqYty9JM9a0wd89VgvyZcPN3fXH7Pt5_Xm-v02c4WoZWabquSSC9kCQ14gMoXGykIVRjUgTV02lbBlXbiqhLZsZdlYA65xljkrjRWX5M2p78FPP-f0FT10wWHfmxGnOeialaxQilWJfPtPkgGvlnxqSGh1Qp2fQvDY6oPvBuMfEqSXYei9XjLXS-Z6GYb-Mwx9TOrrx1dmO2BzFv-mn4B3J-C-6_Hhvxvrzc3tskt-dvK7EPF49o3_oUsllNTfPq21XKu7rwVsNYjf70yoWg</recordid><startdate>201202</startdate><enddate>201202</enddate><creator>Anchieta, R. B.</creator><creator>Rocha, E. P.</creator><creator>Almeida, E. O.</creator><creator>Freitas Junior, A. C.</creator><creator>Martin Junior, M.</creator><creator>Martini, A. P.</creator><creator>Archangelo, C. M.</creator><creator>Ko, C.-C.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7X8</scope></search><sort><creationdate>201202</creationdate><title>Influence of customized composite resin fibreglass posts on the mechanics of restored treated teeth</title><author>Anchieta, R. B. ; Rocha, E. P. ; Almeida, E. O. ; Freitas Junior, A. C. ; Martin Junior, M. ; Martini, A. P. ; Archangelo, C. M. ; Ko, C.-C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4395-bd8625235f01e24ee17eab5474a7d05a96d83b694c860f6f56dba0cdcb1cb5ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adenylate cyclase</topic><topic>Atrophy</topic><topic>Biomechanical Phenomena</topic><topic>Cement</topic><topic>Cementation - methods</topic><topic>Composite Resins - chemistry</topic><topic>Computer programs</topic><topic>Computer Simulation</topic><topic>Dental Materials - chemistry</topic><topic>Dental Prosthesis Design</topic><topic>Dental Pulp Cavity - ultrastructure</topic><topic>Dentin - ultrastructure</topic><topic>Dentistry</topic><topic>Elastic Modulus</topic><topic>fibreglass post</topic><topic>Finite Element Analysis</topic><topic>Glass - chemistry</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Incisor - ultrastructure</topic><topic>Incisors</topic><topic>Materials Testing</topic><topic>Mathematical models</topic><topic>Maxilla</topic><topic>Mechanical properties</topic><topic>Mechanical stimuli</topic><topic>mechanics</topic><topic>Models, Biological</topic><topic>periodontal ligament</topic><topic>Periodontal Ligament - physiology</topic><topic>Polymerization</topic><topic>Post and Core Technique - instrumentation</topic><topic>Resin Cements - chemistry</topic><topic>resin-dentine interface</topic><topic>Resins</topic><topic>Retinoblastoma protein</topic><topic>root canal</topic><topic>Shear Strength</topic><topic>software</topic><topic>Stress</topic><topic>Stress, Mechanical</topic><topic>Surface Properties</topic><topic>Teeth</topic><topic>X-Ray Microtomography - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anchieta, R. B.</creatorcontrib><creatorcontrib>Rocha, E. P.</creatorcontrib><creatorcontrib>Almeida, E. O.</creatorcontrib><creatorcontrib>Freitas Junior, A. C.</creatorcontrib><creatorcontrib>Martin Junior, M.</creatorcontrib><creatorcontrib>Martini, A. P.</creatorcontrib><creatorcontrib>Archangelo, C. M.</creatorcontrib><creatorcontrib>Ko, C.-C.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>International endodontic journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anchieta, R. B.</au><au>Rocha, E. P.</au><au>Almeida, E. O.</au><au>Freitas Junior, A. C.</au><au>Martin Junior, M.</au><au>Martini, A. P.</au><au>Archangelo, C. M.</au><au>Ko, C.-C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of customized composite resin fibreglass posts on the mechanics of restored treated teeth</atitle><jtitle>International endodontic journal</jtitle><addtitle>Int Endod J</addtitle><date>2012-02</date><risdate>2012</risdate><volume>45</volume><issue>2</issue><spage>146</spage><epage>155</epage><pages>146-155</pages><issn>0143-2885</issn><eissn>1365-2591</eissn><abstract>Anchieta RB, Rocha EP, Almeida EO, Freitas Junior AC, Martin Junior M, Martini AP, Archangelo CM, Ko C‐C. Influence of customized composite resin fibreglass posts on the mechanics of restored treated teeth. International Endodontic Journal, 45, 146–155, 2012.
Aim To evaluate the mechanical behaviour of the dentine/cement/post interface of a maxillary central incisor using the finite element method and to compare the stresses exerted using conventional or customized post cementation techniques.
Methodology Four models of a maxillary central incisor were created using fibreglass posts cemented with several techniques: FGP1, a 1‐mm‐diameter conventionally cemented post; CFGP1, a 1‐mm‐diameter customized composite resin post; FGP2, a 2‐mm‐diameter conventionally cemented post; CFGP2, a 2‐mm‐diameter customized composite resin post. A distributed load of 1N was applied to the lingual aspect of the tooth at 45° to its long axis. Additionally, polymerization shrinkage of 1% was simulated for the resin cement. The surface of the periodontal ligament was fixed in the three axes (X =Y = Z = 0). The maximum principal stress (σmax), minimum principal stress (σmin), equivalent von Mises stress (σvM) and shear stress (σshear) were calculated for the dentine/cement/post interface using finite element software.
Results The peak of σmax for the cement layer occurred first in CFGP1 (1.77 MPa), followed by CFGP2 (0.99), FGP2 (0.44) and FGP1 (0.2). The shrinkage stress (σvM) of the cement layer occurred as follows: FGP1 (35 MPa), FGP2 (34), CFGP1 (30.7) and CFGP2 (30.1).
Conclusions Under incisal loading, the cement layer of customized posts had higher stress concentrations. The conventional posts showed higher stress because of polymerization shrinkage.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22070803</pmid><doi>10.1111/j.1365-2591.2011.01955.x</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-2885 |
ispartof | International endodontic journal, 2012-02, Vol.45 (2), p.146-155 |
issn | 0143-2885 1365-2591 |
language | eng |
recordid | cdi_proquest_miscellaneous_916147718 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Adenylate cyclase Atrophy Biomechanical Phenomena Cement Cementation - methods Composite Resins - chemistry Computer programs Computer Simulation Dental Materials - chemistry Dental Prosthesis Design Dental Pulp Cavity - ultrastructure Dentin - ultrastructure Dentistry Elastic Modulus fibreglass post Finite Element Analysis Glass - chemistry Humans Image Processing, Computer-Assisted - methods Imaging, Three-Dimensional - methods Incisor - ultrastructure Incisors Materials Testing Mathematical models Maxilla Mechanical properties Mechanical stimuli mechanics Models, Biological periodontal ligament Periodontal Ligament - physiology Polymerization Post and Core Technique - instrumentation Resin Cements - chemistry resin-dentine interface Resins Retinoblastoma protein root canal Shear Strength software Stress Stress, Mechanical Surface Properties Teeth X-Ray Microtomography - methods |
title | Influence of customized composite resin fibreglass posts on the mechanics of restored treated teeth |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A01%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20customized%20composite%20resin%20fibreglass%20posts%20on%20the%20mechanics%20of%20restored%20treated%20teeth&rft.jtitle=International%20endodontic%20journal&rft.au=Anchieta,%20R.%20B.&rft.date=2012-02&rft.volume=45&rft.issue=2&rft.spage=146&rft.epage=155&rft.pages=146-155&rft.issn=0143-2885&rft.eissn=1365-2591&rft_id=info:doi/10.1111/j.1365-2591.2011.01955.x&rft_dat=%3Cproquest_cross%3E916147718%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4395-bd8625235f01e24ee17eab5474a7d05a96d83b694c860f6f56dba0cdcb1cb5ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1028080390&rft_id=info:pmid/22070803&rfr_iscdi=true |