Loading…
Printed organic conductive polymers thermocouples in textile and smart clothing applications
This work reports on an experimental investigation of the potential of using selected commercially available organic conductive polymers as active ingredients in thermocouples printed on textiles. Poly(3, 4-ethylenedioxythiophene): poly(4styrenesulfonate) (PEDOT:PSS) and polyaniline (PANI) were scre...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This work reports on an experimental investigation of the potential of using selected commercially available organic conductive polymers as active ingredients in thermocouples printed on textiles. Poly(3, 4-ethylenedioxythiophene): poly(4styrenesulfonate) (PEDOT:PSS) and polyaniline (PANI) were screen printed onto woven cotton textile. The influence of multiple thermocycles between 235 K (-38°C) and 350 K (+77°C) on resistivity and thermoelectric properties was examined. The Seebeck coefficients of PEDOT:PSS and PANI were found to be about +18 μV/K and +15 uV/K, respectively, when "metal-polymer" thermocouples were realized by combining the polymer with copper. When "polymer-polymer" thermocouples were formed by combining PEDOT:PSS and PANI, a thermoelectric voltage of about +10 μV/K was observed. A challenge recognized in the experiments is that the generated voltage exhibited drift and fluctuations. |
---|---|
ISSN: | 1094-687X 1558-4615 2694-0604 |
DOI: | 10.1109/IEMBS.2011.6090890 |