Loading…
Mosaicing of optical microscope imagery based on visual information
Tools for high-throughput high-content image analysis can simplify and expedite different stages of biological experiments, by processing and combining different information taken at different time and in different areas of the culture. Among the most important in this field, image mosaicing methods...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c349t-6df81cfae9bfa0080e2e9ab1b085d49a127ec05d0cb8d88c8eac59782c09c7b93 |
---|---|
cites | |
container_end_page | 6165 |
container_issue | |
container_start_page | 6162 |
container_title | |
container_volume | 2011 |
creator | Carozza, L. Bevilacqua, A. Piccinini, F. |
description | Tools for high-throughput high-content image analysis can simplify and expedite different stages of biological experiments, by processing and combining different information taken at different time and in different areas of the culture. Among the most important in this field, image mosaicing methods provide the researcher with a global view of the biological sample in a unique image. Current approaches rely on known motorized x-y stage offsets and work in batch mode, thus jeopardizing the interaction between the microscopic system and the researcher during the investigation of the cell culture. In this work we present an approach for mosaicing of optical microscope imagery, based on local image registration and exploiting visual information only. To our knowledge, this is the first approach suitable to work on-line with non-motorized microscopes. To assess our method, the quality of resulting mosaics is quantitatively evaluated through on-purpose image metrics. Experimental results show the importance of model selection issues and confirm the soundness of our approach. |
doi_str_mv | 10.1109/IEMBS.2011.6091522 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_proquest_miscellaneous_916850381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6091522</ieee_id><sourcerecordid>916850381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-6df81cfae9bfa0080e2e9ab1b085d49a127ec05d0cb8d88c8eac59782c09c7b93</originalsourceid><addsrcrecordid>eNo1kD1PwzAYhM2XKJT-AVi8MaX4dWzHHqEqUKkVAyCxRY7zpjJK4hCnSP33RGq55YZ7dNIdIbfA5gDMPKyWm6f3OWcAc8UMSM5PyDUILoQAztUpuQIpdSIUyDMyM5n-zwDOx4wZkSidfU3ILMZvNkopk6b8kkw451JmQl2RxSZE651vtzRUNHSDd7amjXd9iC50SH1jt9jvaWEjljS09NfH3Yj4tgp9Ywcf2htyUdk64uzoU_L5vPxYvCbrt5fV4nGduFSYIVFlpcFVFk1RWcY0Q47GFlAwLUthLPAMHZMlc4UutXYarZPjKu6YcVlh0im5P_R2ffjZYRzyxkeHdW1bDLuYG1BaslTDSN4dSI-IedePI_p9fjwx_QPrFmAP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>916850381</pqid></control><display><type>conference_proceeding</type><title>Mosaicing of optical microscope imagery based on visual information</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Carozza, L. ; Bevilacqua, A. ; Piccinini, F.</creator><creatorcontrib>Carozza, L. ; Bevilacqua, A. ; Piccinini, F.</creatorcontrib><description>Tools for high-throughput high-content image analysis can simplify and expedite different stages of biological experiments, by processing and combining different information taken at different time and in different areas of the culture. Among the most important in this field, image mosaicing methods provide the researcher with a global view of the biological sample in a unique image. Current approaches rely on known motorized x-y stage offsets and work in batch mode, thus jeopardizing the interaction between the microscopic system and the researcher during the investigation of the cell culture. In this work we present an approach for mosaicing of optical microscope imagery, based on local image registration and exploiting visual information only. To our knowledge, this is the first approach suitable to work on-line with non-motorized microscopes. To assess our method, the quality of resulting mosaics is quantitatively evaluated through on-purpose image metrics. Experimental results show the importance of model selection issues and confirm the soundness of our approach.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISBN: 9781424441211</identifier><identifier>ISBN: 1424441218</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISSN: 2694-0604</identifier><identifier>EISBN: 1424441226</identifier><identifier>EISBN: 1457715899</identifier><identifier>EISBN: 9781457715891</identifier><identifier>EISBN: 9781424441228</identifier><identifier>DOI: 10.1109/IEMBS.2011.6091522</identifier><identifier>PMID: 22255746</identifier><language>eng</language><publisher>IEEE</publisher><subject>Indexes ; Measurement ; Microscopy ; Optical imaging ; Optical microscopy ; Robustness ; Visualization</subject><ispartof>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, Vol.2011, p.6162-6165</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-6df81cfae9bfa0080e2e9ab1b085d49a127ec05d0cb8d88c8eac59782c09c7b93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6091522$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,2056,27923,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6091522$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Carozza, L.</creatorcontrib><creatorcontrib>Bevilacqua, A.</creatorcontrib><creatorcontrib>Piccinini, F.</creatorcontrib><title>Mosaicing of optical microscope imagery based on visual information</title><title>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>IEMBS</addtitle><description>Tools for high-throughput high-content image analysis can simplify and expedite different stages of biological experiments, by processing and combining different information taken at different time and in different areas of the culture. Among the most important in this field, image mosaicing methods provide the researcher with a global view of the biological sample in a unique image. Current approaches rely on known motorized x-y stage offsets and work in batch mode, thus jeopardizing the interaction between the microscopic system and the researcher during the investigation of the cell culture. In this work we present an approach for mosaicing of optical microscope imagery, based on local image registration and exploiting visual information only. To our knowledge, this is the first approach suitable to work on-line with non-motorized microscopes. To assess our method, the quality of resulting mosaics is quantitatively evaluated through on-purpose image metrics. Experimental results show the importance of model selection issues and confirm the soundness of our approach.</description><subject>Indexes</subject><subject>Measurement</subject><subject>Microscopy</subject><subject>Optical imaging</subject><subject>Optical microscopy</subject><subject>Robustness</subject><subject>Visualization</subject><issn>1094-687X</issn><issn>1558-4615</issn><issn>2694-0604</issn><isbn>9781424441211</isbn><isbn>1424441218</isbn><isbn>1424441226</isbn><isbn>1457715899</isbn><isbn>9781457715891</isbn><isbn>9781424441228</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kD1PwzAYhM2XKJT-AVi8MaX4dWzHHqEqUKkVAyCxRY7zpjJK4hCnSP33RGq55YZ7dNIdIbfA5gDMPKyWm6f3OWcAc8UMSM5PyDUILoQAztUpuQIpdSIUyDMyM5n-zwDOx4wZkSidfU3ILMZvNkopk6b8kkw451JmQl2RxSZE651vtzRUNHSDd7amjXd9iC50SH1jt9jvaWEjljS09NfH3Yj4tgp9Ywcf2htyUdk64uzoU_L5vPxYvCbrt5fV4nGduFSYIVFlpcFVFk1RWcY0Q47GFlAwLUthLPAMHZMlc4UutXYarZPjKu6YcVlh0im5P_R2ffjZYRzyxkeHdW1bDLuYG1BaslTDSN4dSI-IedePI_p9fjwx_QPrFmAP</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Carozza, L.</creator><creator>Bevilacqua, A.</creator><creator>Piccinini, F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7X8</scope></search><sort><creationdate>20110101</creationdate><title>Mosaicing of optical microscope imagery based on visual information</title><author>Carozza, L. ; Bevilacqua, A. ; Piccinini, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-6df81cfae9bfa0080e2e9ab1b085d49a127ec05d0cb8d88c8eac59782c09c7b93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Indexes</topic><topic>Measurement</topic><topic>Microscopy</topic><topic>Optical imaging</topic><topic>Optical microscopy</topic><topic>Robustness</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Carozza, L.</creatorcontrib><creatorcontrib>Bevilacqua, A.</creatorcontrib><creatorcontrib>Piccinini, F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>MEDLINE - Academic</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Carozza, L.</au><au>Bevilacqua, A.</au><au>Piccinini, F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Mosaicing of optical microscope imagery based on visual information</atitle><btitle>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</btitle><stitle>IEMBS</stitle><date>2011-01-01</date><risdate>2011</risdate><volume>2011</volume><spage>6162</spage><epage>6165</epage><pages>6162-6165</pages><issn>1094-687X</issn><eissn>1558-4615</eissn><eissn>2694-0604</eissn><isbn>9781424441211</isbn><isbn>1424441218</isbn><eisbn>1424441226</eisbn><eisbn>1457715899</eisbn><eisbn>9781457715891</eisbn><eisbn>9781424441228</eisbn><abstract>Tools for high-throughput high-content image analysis can simplify and expedite different stages of biological experiments, by processing and combining different information taken at different time and in different areas of the culture. Among the most important in this field, image mosaicing methods provide the researcher with a global view of the biological sample in a unique image. Current approaches rely on known motorized x-y stage offsets and work in batch mode, thus jeopardizing the interaction between the microscopic system and the researcher during the investigation of the cell culture. In this work we present an approach for mosaicing of optical microscope imagery, based on local image registration and exploiting visual information only. To our knowledge, this is the first approach suitable to work on-line with non-motorized microscopes. To assess our method, the quality of resulting mosaics is quantitatively evaluated through on-purpose image metrics. Experimental results show the importance of model selection issues and confirm the soundness of our approach.</abstract><pub>IEEE</pub><pmid>22255746</pmid><doi>10.1109/IEMBS.2011.6091522</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1094-687X |
ispartof | 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, Vol.2011, p.6162-6165 |
issn | 1094-687X 1558-4615 2694-0604 |
language | eng |
recordid | cdi_proquest_miscellaneous_916850381 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Indexes Measurement Microscopy Optical imaging Optical microscopy Robustness Visualization |
title | Mosaicing of optical microscope imagery based on visual information |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A33%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Mosaicing%20of%20optical%20microscope%20imagery%20based%20on%20visual%20information&rft.btitle=2011%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Carozza,%20L.&rft.date=2011-01-01&rft.volume=2011&rft.spage=6162&rft.epage=6165&rft.pages=6162-6165&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=9781424441211&rft.isbn_list=1424441218&rft_id=info:doi/10.1109/IEMBS.2011.6091522&rft.eisbn=1424441226&rft.eisbn_list=1457715899&rft.eisbn_list=9781457715891&rft.eisbn_list=9781424441228&rft_dat=%3Cproquest_6IE%3E916850381%3C/proquest_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-6df81cfae9bfa0080e2e9ab1b085d49a127ec05d0cb8d88c8eac59782c09c7b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=916850381&rft_id=info:pmid/22255746&rft_ieee_id=6091522&rfr_iscdi=true |