Loading…

Mosaicing of optical microscope imagery based on visual information

Tools for high-throughput high-content image analysis can simplify and expedite different stages of biological experiments, by processing and combining different information taken at different time and in different areas of the culture. Among the most important in this field, image mosaicing methods...

Full description

Saved in:
Bibliographic Details
Main Authors: Carozza, L., Bevilacqua, A., Piccinini, F.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-6df81cfae9bfa0080e2e9ab1b085d49a127ec05d0cb8d88c8eac59782c09c7b93
cites
container_end_page 6165
container_issue
container_start_page 6162
container_title
container_volume 2011
creator Carozza, L.
Bevilacqua, A.
Piccinini, F.
description Tools for high-throughput high-content image analysis can simplify and expedite different stages of biological experiments, by processing and combining different information taken at different time and in different areas of the culture. Among the most important in this field, image mosaicing methods provide the researcher with a global view of the biological sample in a unique image. Current approaches rely on known motorized x-y stage offsets and work in batch mode, thus jeopardizing the interaction between the microscopic system and the researcher during the investigation of the cell culture. In this work we present an approach for mosaicing of optical microscope imagery, based on local image registration and exploiting visual information only. To our knowledge, this is the first approach suitable to work on-line with non-motorized microscopes. To assess our method, the quality of resulting mosaics is quantitatively evaluated through on-purpose image metrics. Experimental results show the importance of model selection issues and confirm the soundness of our approach.
doi_str_mv 10.1109/IEMBS.2011.6091522
format conference_proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_proquest_miscellaneous_916850381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6091522</ieee_id><sourcerecordid>916850381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-6df81cfae9bfa0080e2e9ab1b085d49a127ec05d0cb8d88c8eac59782c09c7b93</originalsourceid><addsrcrecordid>eNo1kD1PwzAYhM2XKJT-AVi8MaX4dWzHHqEqUKkVAyCxRY7zpjJK4hCnSP33RGq55YZ7dNIdIbfA5gDMPKyWm6f3OWcAc8UMSM5PyDUILoQAztUpuQIpdSIUyDMyM5n-zwDOx4wZkSidfU3ILMZvNkopk6b8kkw451JmQl2RxSZE651vtzRUNHSDd7amjXd9iC50SH1jt9jvaWEjljS09NfH3Yj4tgp9Ywcf2htyUdk64uzoU_L5vPxYvCbrt5fV4nGduFSYIVFlpcFVFk1RWcY0Q47GFlAwLUthLPAMHZMlc4UutXYarZPjKu6YcVlh0im5P_R2ffjZYRzyxkeHdW1bDLuYG1BaslTDSN4dSI-IedePI_p9fjwx_QPrFmAP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>916850381</pqid></control><display><type>conference_proceeding</type><title>Mosaicing of optical microscope imagery based on visual information</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Carozza, L. ; Bevilacqua, A. ; Piccinini, F.</creator><creatorcontrib>Carozza, L. ; Bevilacqua, A. ; Piccinini, F.</creatorcontrib><description>Tools for high-throughput high-content image analysis can simplify and expedite different stages of biological experiments, by processing and combining different information taken at different time and in different areas of the culture. Among the most important in this field, image mosaicing methods provide the researcher with a global view of the biological sample in a unique image. Current approaches rely on known motorized x-y stage offsets and work in batch mode, thus jeopardizing the interaction between the microscopic system and the researcher during the investigation of the cell culture. In this work we present an approach for mosaicing of optical microscope imagery, based on local image registration and exploiting visual information only. To our knowledge, this is the first approach suitable to work on-line with non-motorized microscopes. To assess our method, the quality of resulting mosaics is quantitatively evaluated through on-purpose image metrics. Experimental results show the importance of model selection issues and confirm the soundness of our approach.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISBN: 9781424441211</identifier><identifier>ISBN: 1424441218</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISSN: 2694-0604</identifier><identifier>EISBN: 1424441226</identifier><identifier>EISBN: 1457715899</identifier><identifier>EISBN: 9781457715891</identifier><identifier>EISBN: 9781424441228</identifier><identifier>DOI: 10.1109/IEMBS.2011.6091522</identifier><identifier>PMID: 22255746</identifier><language>eng</language><publisher>IEEE</publisher><subject>Indexes ; Measurement ; Microscopy ; Optical imaging ; Optical microscopy ; Robustness ; Visualization</subject><ispartof>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, Vol.2011, p.6162-6165</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-6df81cfae9bfa0080e2e9ab1b085d49a127ec05d0cb8d88c8eac59782c09c7b93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6091522$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,2056,27923,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6091522$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Carozza, L.</creatorcontrib><creatorcontrib>Bevilacqua, A.</creatorcontrib><creatorcontrib>Piccinini, F.</creatorcontrib><title>Mosaicing of optical microscope imagery based on visual information</title><title>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>IEMBS</addtitle><description>Tools for high-throughput high-content image analysis can simplify and expedite different stages of biological experiments, by processing and combining different information taken at different time and in different areas of the culture. Among the most important in this field, image mosaicing methods provide the researcher with a global view of the biological sample in a unique image. Current approaches rely on known motorized x-y stage offsets and work in batch mode, thus jeopardizing the interaction between the microscopic system and the researcher during the investigation of the cell culture. In this work we present an approach for mosaicing of optical microscope imagery, based on local image registration and exploiting visual information only. To our knowledge, this is the first approach suitable to work on-line with non-motorized microscopes. To assess our method, the quality of resulting mosaics is quantitatively evaluated through on-purpose image metrics. Experimental results show the importance of model selection issues and confirm the soundness of our approach.</description><subject>Indexes</subject><subject>Measurement</subject><subject>Microscopy</subject><subject>Optical imaging</subject><subject>Optical microscopy</subject><subject>Robustness</subject><subject>Visualization</subject><issn>1094-687X</issn><issn>1558-4615</issn><issn>2694-0604</issn><isbn>9781424441211</isbn><isbn>1424441218</isbn><isbn>1424441226</isbn><isbn>1457715899</isbn><isbn>9781457715891</isbn><isbn>9781424441228</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kD1PwzAYhM2XKJT-AVi8MaX4dWzHHqEqUKkVAyCxRY7zpjJK4hCnSP33RGq55YZ7dNIdIbfA5gDMPKyWm6f3OWcAc8UMSM5PyDUILoQAztUpuQIpdSIUyDMyM5n-zwDOx4wZkSidfU3ILMZvNkopk6b8kkw451JmQl2RxSZE651vtzRUNHSDd7amjXd9iC50SH1jt9jvaWEjljS09NfH3Yj4tgp9Ywcf2htyUdk64uzoU_L5vPxYvCbrt5fV4nGduFSYIVFlpcFVFk1RWcY0Q47GFlAwLUthLPAMHZMlc4UutXYarZPjKu6YcVlh0im5P_R2ffjZYRzyxkeHdW1bDLuYG1BaslTDSN4dSI-IedePI_p9fjwx_QPrFmAP</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Carozza, L.</creator><creator>Bevilacqua, A.</creator><creator>Piccinini, F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7X8</scope></search><sort><creationdate>20110101</creationdate><title>Mosaicing of optical microscope imagery based on visual information</title><author>Carozza, L. ; Bevilacqua, A. ; Piccinini, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-6df81cfae9bfa0080e2e9ab1b085d49a127ec05d0cb8d88c8eac59782c09c7b93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Indexes</topic><topic>Measurement</topic><topic>Microscopy</topic><topic>Optical imaging</topic><topic>Optical microscopy</topic><topic>Robustness</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Carozza, L.</creatorcontrib><creatorcontrib>Bevilacqua, A.</creatorcontrib><creatorcontrib>Piccinini, F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>MEDLINE - Academic</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Carozza, L.</au><au>Bevilacqua, A.</au><au>Piccinini, F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Mosaicing of optical microscope imagery based on visual information</atitle><btitle>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</btitle><stitle>IEMBS</stitle><date>2011-01-01</date><risdate>2011</risdate><volume>2011</volume><spage>6162</spage><epage>6165</epage><pages>6162-6165</pages><issn>1094-687X</issn><eissn>1558-4615</eissn><eissn>2694-0604</eissn><isbn>9781424441211</isbn><isbn>1424441218</isbn><eisbn>1424441226</eisbn><eisbn>1457715899</eisbn><eisbn>9781457715891</eisbn><eisbn>9781424441228</eisbn><abstract>Tools for high-throughput high-content image analysis can simplify and expedite different stages of biological experiments, by processing and combining different information taken at different time and in different areas of the culture. Among the most important in this field, image mosaicing methods provide the researcher with a global view of the biological sample in a unique image. Current approaches rely on known motorized x-y stage offsets and work in batch mode, thus jeopardizing the interaction between the microscopic system and the researcher during the investigation of the cell culture. In this work we present an approach for mosaicing of optical microscope imagery, based on local image registration and exploiting visual information only. To our knowledge, this is the first approach suitable to work on-line with non-motorized microscopes. To assess our method, the quality of resulting mosaics is quantitatively evaluated through on-purpose image metrics. Experimental results show the importance of model selection issues and confirm the soundness of our approach.</abstract><pub>IEEE</pub><pmid>22255746</pmid><doi>10.1109/IEMBS.2011.6091522</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1094-687X
ispartof 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, Vol.2011, p.6162-6165
issn 1094-687X
1558-4615
2694-0604
language eng
recordid cdi_proquest_miscellaneous_916850381
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Indexes
Measurement
Microscopy
Optical imaging
Optical microscopy
Robustness
Visualization
title Mosaicing of optical microscope imagery based on visual information
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A33%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Mosaicing%20of%20optical%20microscope%20imagery%20based%20on%20visual%20information&rft.btitle=2011%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Carozza,%20L.&rft.date=2011-01-01&rft.volume=2011&rft.spage=6162&rft.epage=6165&rft.pages=6162-6165&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=9781424441211&rft.isbn_list=1424441218&rft_id=info:doi/10.1109/IEMBS.2011.6091522&rft.eisbn=1424441226&rft.eisbn_list=1457715899&rft.eisbn_list=9781457715891&rft.eisbn_list=9781424441228&rft_dat=%3Cproquest_6IE%3E916850381%3C/proquest_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-6df81cfae9bfa0080e2e9ab1b085d49a127ec05d0cb8d88c8eac59782c09c7b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=916850381&rft_id=info:pmid/22255746&rft_ieee_id=6091522&rfr_iscdi=true