Loading…
Person identification in irregular cardiac conditions using electrocardiogram signals
This paper presents a person identification mechanism in irregular cardiac conditions using ECG signals. A total of 30 subjects were used in the study from three different public ECG databases containing various abnormal heart conditions from the Paroxysmal Atrial Fibrillation Predicition Challenge...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3775 |
container_issue | |
container_start_page | 3772 |
container_title | |
container_volume | 2011 |
creator | Sidek, K. A. Khalil, I. |
description | This paper presents a person identification mechanism in irregular cardiac conditions using ECG signals. A total of 30 subjects were used in the study from three different public ECG databases containing various abnormal heart conditions from the Paroxysmal Atrial Fibrillation Predicition Challenge database (AFPDB), MIT-BIH Supraventricular Arrthymia database (SVDB) and T-Wave Alternans Challenge database (TWADB). Cross correlation (CC) was used as the biometric matching algorithm with defined threshold values to evaluate the performance. In order to measure the efficiency of this simple yet effective matching algorithm, two biometric performance metrics were used which are false acceptance rate (FAR) and false reject rate (FRR). Our experimentation results suggest that ECG based biometric identification with irregular cardiac condition gives a higher recognition rate of different ECG signals when tested for three different abnormal cardiac databases yielding false acceptance rate (FAR) of 2%, 3% and 2% and false reject rate (FRR) of 1%, 2% and 0% for AFPDB, SVDB and TWADB respectively. These results also indicate the existence of salient biometric characteristics in the ECG morphology within the QRS complex that tends to differentiate individuals. |
doi_str_mv | 10.1109/IEMBS.2011.6090644 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_proquest_miscellaneous_916855166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6090644</ieee_id><sourcerecordid>916855166</sourcerecordid><originalsourceid>FETCH-LOGICAL-i300t-1399491b7ee013b75c1d7591ac51ecdd1c6d47a1e028aad45acc3edba8f6326e3</originalsourceid><addsrcrecordid>eNo1kM1Lw0AQxdcvbK39B_SSm6fUnf1K9mhL1UJFQQvewnZ3GlbSpO4mB_97U1uHgcfwezx4Q8gN0AkA1feL-cv0fcIowERRTZUQJ-QKBBNCAGPqlAxByjwVCuQZGess_2cA5z2jWqQqzz4HZBzjF-1HKc05uyQDxpiUoOiQrN4wxKZOvMO69RtvTev3Z78hYNlVJiTWBOeNTWxTO7_HMemir8sEK7RtaP54UwazTaIva1PFa3Kx6QXHRx2R1eP8Y_acLl-fFrOHZeo5pW0KXGuhYZ0hUuDrTFpwmdRgrAS0zoFVTmQGkLLcGCeksZajW5t8ozhTyEfk7pC7C813h7Ettj5arCpTY9PFQoPK90VV77w9OD0iFrvgtyb8FMe38l9XLWdH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>916855166</pqid></control><display><type>conference_proceeding</type><title>Person identification in irregular cardiac conditions using electrocardiogram signals</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sidek, K. A. ; Khalil, I.</creator><creatorcontrib>Sidek, K. A. ; Khalil, I.</creatorcontrib><description>This paper presents a person identification mechanism in irregular cardiac conditions using ECG signals. A total of 30 subjects were used in the study from three different public ECG databases containing various abnormal heart conditions from the Paroxysmal Atrial Fibrillation Predicition Challenge database (AFPDB), MIT-BIH Supraventricular Arrthymia database (SVDB) and T-Wave Alternans Challenge database (TWADB). Cross correlation (CC) was used as the biometric matching algorithm with defined threshold values to evaluate the performance. In order to measure the efficiency of this simple yet effective matching algorithm, two biometric performance metrics were used which are false acceptance rate (FAR) and false reject rate (FRR). Our experimentation results suggest that ECG based biometric identification with irregular cardiac condition gives a higher recognition rate of different ECG signals when tested for three different abnormal cardiac databases yielding false acceptance rate (FAR) of 2%, 3% and 2% and false reject rate (FRR) of 1%, 2% and 0% for AFPDB, SVDB and TWADB respectively. These results also indicate the existence of salient biometric characteristics in the ECG morphology within the QRS complex that tends to differentiate individuals.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISBN: 9781424441211</identifier><identifier>ISBN: 1424441218</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISSN: 2694-0604</identifier><identifier>EISBN: 1424441226</identifier><identifier>EISBN: 1457715899</identifier><identifier>EISBN: 9781457715891</identifier><identifier>EISBN: 9781424441228</identifier><identifier>DOI: 10.1109/IEMBS.2011.6090644</identifier><identifier>PMID: 22255160</identifier><language>eng</language><publisher>IEEE</publisher><subject>Correlation ; cross correlation ; ECG biometrics ; Educational institutions ; Electrocardiography ; Feature extraction ; Heart ; irregular cardiac condition ; Morphology ; Signal processing in physiological systems</subject><ispartof>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, Vol.2011, p.3772-3775</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6090644$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,2058,27924,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6090644$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sidek, K. A.</creatorcontrib><creatorcontrib>Khalil, I.</creatorcontrib><title>Person identification in irregular cardiac conditions using electrocardiogram signals</title><title>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>IEMBS</addtitle><description>This paper presents a person identification mechanism in irregular cardiac conditions using ECG signals. A total of 30 subjects were used in the study from three different public ECG databases containing various abnormal heart conditions from the Paroxysmal Atrial Fibrillation Predicition Challenge database (AFPDB), MIT-BIH Supraventricular Arrthymia database (SVDB) and T-Wave Alternans Challenge database (TWADB). Cross correlation (CC) was used as the biometric matching algorithm with defined threshold values to evaluate the performance. In order to measure the efficiency of this simple yet effective matching algorithm, two biometric performance metrics were used which are false acceptance rate (FAR) and false reject rate (FRR). Our experimentation results suggest that ECG based biometric identification with irregular cardiac condition gives a higher recognition rate of different ECG signals when tested for three different abnormal cardiac databases yielding false acceptance rate (FAR) of 2%, 3% and 2% and false reject rate (FRR) of 1%, 2% and 0% for AFPDB, SVDB and TWADB respectively. These results also indicate the existence of salient biometric characteristics in the ECG morphology within the QRS complex that tends to differentiate individuals.</description><subject>Correlation</subject><subject>cross correlation</subject><subject>ECG biometrics</subject><subject>Educational institutions</subject><subject>Electrocardiography</subject><subject>Feature extraction</subject><subject>Heart</subject><subject>irregular cardiac condition</subject><subject>Morphology</subject><subject>Signal processing in physiological systems</subject><issn>1094-687X</issn><issn>1558-4615</issn><issn>2694-0604</issn><isbn>9781424441211</isbn><isbn>1424441218</isbn><isbn>1424441226</isbn><isbn>1457715899</isbn><isbn>9781457715891</isbn><isbn>9781424441228</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kM1Lw0AQxdcvbK39B_SSm6fUnf1K9mhL1UJFQQvewnZ3GlbSpO4mB_97U1uHgcfwezx4Q8gN0AkA1feL-cv0fcIowERRTZUQJ-QKBBNCAGPqlAxByjwVCuQZGess_2cA5z2jWqQqzz4HZBzjF-1HKc05uyQDxpiUoOiQrN4wxKZOvMO69RtvTev3Z78hYNlVJiTWBOeNTWxTO7_HMemir8sEK7RtaP54UwazTaIva1PFa3Kx6QXHRx2R1eP8Y_acLl-fFrOHZeo5pW0KXGuhYZ0hUuDrTFpwmdRgrAS0zoFVTmQGkLLcGCeksZajW5t8ozhTyEfk7pC7C813h7Ettj5arCpTY9PFQoPK90VV77w9OD0iFrvgtyb8FMe38l9XLWdH</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Sidek, K. A.</creator><creator>Khalil, I.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7X8</scope></search><sort><creationdate>20110101</creationdate><title>Person identification in irregular cardiac conditions using electrocardiogram signals</title><author>Sidek, K. A. ; Khalil, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i300t-1399491b7ee013b75c1d7591ac51ecdd1c6d47a1e028aad45acc3edba8f6326e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Correlation</topic><topic>cross correlation</topic><topic>ECG biometrics</topic><topic>Educational institutions</topic><topic>Electrocardiography</topic><topic>Feature extraction</topic><topic>Heart</topic><topic>irregular cardiac condition</topic><topic>Morphology</topic><topic>Signal processing in physiological systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Sidek, K. A.</creatorcontrib><creatorcontrib>Khalil, I.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>MEDLINE - Academic</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sidek, K. A.</au><au>Khalil, I.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Person identification in irregular cardiac conditions using electrocardiogram signals</atitle><btitle>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</btitle><stitle>IEMBS</stitle><date>2011-01-01</date><risdate>2011</risdate><volume>2011</volume><spage>3772</spage><epage>3775</epage><pages>3772-3775</pages><issn>1094-687X</issn><eissn>1558-4615</eissn><eissn>2694-0604</eissn><isbn>9781424441211</isbn><isbn>1424441218</isbn><eisbn>1424441226</eisbn><eisbn>1457715899</eisbn><eisbn>9781457715891</eisbn><eisbn>9781424441228</eisbn><abstract>This paper presents a person identification mechanism in irregular cardiac conditions using ECG signals. A total of 30 subjects were used in the study from three different public ECG databases containing various abnormal heart conditions from the Paroxysmal Atrial Fibrillation Predicition Challenge database (AFPDB), MIT-BIH Supraventricular Arrthymia database (SVDB) and T-Wave Alternans Challenge database (TWADB). Cross correlation (CC) was used as the biometric matching algorithm with defined threshold values to evaluate the performance. In order to measure the efficiency of this simple yet effective matching algorithm, two biometric performance metrics were used which are false acceptance rate (FAR) and false reject rate (FRR). Our experimentation results suggest that ECG based biometric identification with irregular cardiac condition gives a higher recognition rate of different ECG signals when tested for three different abnormal cardiac databases yielding false acceptance rate (FAR) of 2%, 3% and 2% and false reject rate (FRR) of 1%, 2% and 0% for AFPDB, SVDB and TWADB respectively. These results also indicate the existence of salient biometric characteristics in the ECG morphology within the QRS complex that tends to differentiate individuals.</abstract><pub>IEEE</pub><pmid>22255160</pmid><doi>10.1109/IEMBS.2011.6090644</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1094-687X |
ispartof | 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, Vol.2011, p.3772-3775 |
issn | 1094-687X 1558-4615 2694-0604 |
language | eng |
recordid | cdi_proquest_miscellaneous_916855166 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Correlation cross correlation ECG biometrics Educational institutions Electrocardiography Feature extraction Heart irregular cardiac condition Morphology Signal processing in physiological systems |
title | Person identification in irregular cardiac conditions using electrocardiogram signals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A19%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Person%20identification%20in%20irregular%20cardiac%20conditions%20using%20electrocardiogram%20signals&rft.btitle=2011%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Sidek,%20K.%20A.&rft.date=2011-01-01&rft.volume=2011&rft.spage=3772&rft.epage=3775&rft.pages=3772-3775&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=9781424441211&rft.isbn_list=1424441218&rft_id=info:doi/10.1109/IEMBS.2011.6090644&rft.eisbn=1424441226&rft.eisbn_list=1457715899&rft.eisbn_list=9781457715891&rft.eisbn_list=9781424441228&rft_dat=%3Cproquest_6IE%3E916855166%3C/proquest_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i300t-1399491b7ee013b75c1d7591ac51ecdd1c6d47a1e028aad45acc3edba8f6326e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=916855166&rft_id=info:pmid/22255160&rft_ieee_id=6090644&rfr_iscdi=true |