Loading…

Simulation Study of Structural, Transport, and Thermodynamic Properties of TIP4P/2005 Water in Single-Walled Carbon Nanotubes

Because carbon nanotubes lack a strong interaction with water, its hydrogen bond network is altered mainly by the confining geometry alone, allowing one to study its influence on the structure of water. Here structural, transport, and thermodynamic properties are investigated for TIP4P/2005 water co...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. B 2012-01, Vol.116 (2), p.751-762
Main Authors: Guse, Christa, Hentschke, Reinhard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a413t-3e027a2a7e774361a37958afc45e1f6e81b795da3825cacb1fbaa2ed975969a53
cites cdi_FETCH-LOGICAL-a413t-3e027a2a7e774361a37958afc45e1f6e81b795da3825cacb1fbaa2ed975969a53
container_end_page 762
container_issue 2
container_start_page 751
container_title The journal of physical chemistry. B
container_volume 116
creator Guse, Christa
Hentschke, Reinhard
description Because carbon nanotubes lack a strong interaction with water, its hydrogen bond network is altered mainly by the confining geometry alone, allowing one to study its influence on the structure of water. Here structural, transport, and thermodynamic properties are investigated for TIP4P/2005 water confined in single-walled carbon nanotubes, possessing diameters from 11 to 50 Å. Temperatures range from 220 to 600 K for the two pressures studied, 1 and 1000 atm. The results, based on grand canonical Monte Carlo techniques, include heats of adsorption, temperature and diameter dependent densities, density profiles, diffusion constants, and pressure tensor components. The main findings comprise the suppression of the density maximum in tubes with diameters below 50–25 Å, indicating that structures responsible for this anomaly are of comparable size. Furthermore the axial pressure can be described within the continuum limit with deviations only appearing for diameters below 20 Å. The diffusion constants are similar to that of bulk water, demonstrating that the agility of the hydrogen bond network is preserved in the confining geometries considered here.
doi_str_mv 10.1021/jp210193w
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_917159334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>917159334</sourcerecordid><originalsourceid>FETCH-LOGICAL-a413t-3e027a2a7e774361a37958afc45e1f6e81b795da3825cacb1fbaa2ed975969a53</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVpaD7aQ_9A0aU0hbjRSJZlH8vSNoHQLmRLjmZsj1svtuXog7KH_Pcq7DanksMww_DMO_C-jL0F8QmEhMvtIkFApf68YCegpchSmZeHuQBRHLNT77dCSC3L4hU7lhIMVFCesIfbYYojhsHO_DbEbsdtnwYX2xAdjhd843D2i3XhguPc8c1vcpPtdjNOQ8vXzi7kwkD-8Wxzvc7Xl1IIze8wkOND0hzmXyNldziO1PEVuiY9-o6zDbEh_5od9Th6enPoZ-zn1y-b1VV28-Pb9erzTYY5qJApEtKgREPG5KoAVKbSJfZtrgn6gkpo0qJDVUrdYttA3yBK6iqjq6JCrc7Yh73u4ux9JB_qafAtjSPOZKOvq2SHrpTKE3n-LAlGq9yUUsqEftyjrbPeO-rrxQ0Tul0Non7MpX7KJbHvDrKxmah7Iv8FkYD3ewBbX29tdHPy4z9CfwHcl5Pf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753478222</pqid></control><display><type>article</type><title>Simulation Study of Structural, Transport, and Thermodynamic Properties of TIP4P/2005 Water in Single-Walled Carbon Nanotubes</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Guse, Christa ; Hentschke, Reinhard</creator><creatorcontrib>Guse, Christa ; Hentschke, Reinhard</creatorcontrib><description>Because carbon nanotubes lack a strong interaction with water, its hydrogen bond network is altered mainly by the confining geometry alone, allowing one to study its influence on the structure of water. Here structural, transport, and thermodynamic properties are investigated for TIP4P/2005 water confined in single-walled carbon nanotubes, possessing diameters from 11 to 50 Å. Temperatures range from 220 to 600 K for the two pressures studied, 1 and 1000 atm. The results, based on grand canonical Monte Carlo techniques, include heats of adsorption, temperature and diameter dependent densities, density profiles, diffusion constants, and pressure tensor components. The main findings comprise the suppression of the density maximum in tubes with diameters below 50–25 Å, indicating that structures responsible for this anomaly are of comparable size. Furthermore the axial pressure can be described within the continuum limit with deviations only appearing for diameters below 20 Å. The diffusion constants are similar to that of bulk water, demonstrating that the agility of the hydrogen bond network is preserved in the confining geometries considered here.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp210193w</identifier><identifier>PMID: 22171918</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>B: Macromolecules, Soft Matter ; Confining ; Constants ; Density ; Diffusion ; Networks ; Single wall carbon nanotubes ; Thermodynamic properties ; Transport</subject><ispartof>The journal of physical chemistry. B, 2012-01, Vol.116 (2), p.751-762</ispartof><rights>Copyright © 2011 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a413t-3e027a2a7e774361a37958afc45e1f6e81b795da3825cacb1fbaa2ed975969a53</citedby><cites>FETCH-LOGICAL-a413t-3e027a2a7e774361a37958afc45e1f6e81b795da3825cacb1fbaa2ed975969a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22171918$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guse, Christa</creatorcontrib><creatorcontrib>Hentschke, Reinhard</creatorcontrib><title>Simulation Study of Structural, Transport, and Thermodynamic Properties of TIP4P/2005 Water in Single-Walled Carbon Nanotubes</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Because carbon nanotubes lack a strong interaction with water, its hydrogen bond network is altered mainly by the confining geometry alone, allowing one to study its influence on the structure of water. Here structural, transport, and thermodynamic properties are investigated for TIP4P/2005 water confined in single-walled carbon nanotubes, possessing diameters from 11 to 50 Å. Temperatures range from 220 to 600 K for the two pressures studied, 1 and 1000 atm. The results, based on grand canonical Monte Carlo techniques, include heats of adsorption, temperature and diameter dependent densities, density profiles, diffusion constants, and pressure tensor components. The main findings comprise the suppression of the density maximum in tubes with diameters below 50–25 Å, indicating that structures responsible for this anomaly are of comparable size. Furthermore the axial pressure can be described within the continuum limit with deviations only appearing for diameters below 20 Å. The diffusion constants are similar to that of bulk water, demonstrating that the agility of the hydrogen bond network is preserved in the confining geometries considered here.</description><subject>B: Macromolecules, Soft Matter</subject><subject>Confining</subject><subject>Constants</subject><subject>Density</subject><subject>Diffusion</subject><subject>Networks</subject><subject>Single wall carbon nanotubes</subject><subject>Thermodynamic properties</subject><subject>Transport</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kU1r3DAQhkVpaD7aQ_9A0aU0hbjRSJZlH8vSNoHQLmRLjmZsj1svtuXog7KH_Pcq7DanksMww_DMO_C-jL0F8QmEhMvtIkFApf68YCegpchSmZeHuQBRHLNT77dCSC3L4hU7lhIMVFCesIfbYYojhsHO_DbEbsdtnwYX2xAdjhd843D2i3XhguPc8c1vcpPtdjNOQ8vXzi7kwkD-8Wxzvc7Xl1IIze8wkOND0hzmXyNldziO1PEVuiY9-o6zDbEh_5od9Th6enPoZ-zn1y-b1VV28-Pb9erzTYY5qJApEtKgREPG5KoAVKbSJfZtrgn6gkpo0qJDVUrdYttA3yBK6iqjq6JCrc7Yh73u4ux9JB_qafAtjSPOZKOvq2SHrpTKE3n-LAlGq9yUUsqEftyjrbPeO-rrxQ0Tul0Non7MpX7KJbHvDrKxmah7Iv8FkYD3ewBbX29tdHPy4z9CfwHcl5Pf</recordid><startdate>20120119</startdate><enddate>20120119</enddate><creator>Guse, Christa</creator><creator>Hentschke, Reinhard</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20120119</creationdate><title>Simulation Study of Structural, Transport, and Thermodynamic Properties of TIP4P/2005 Water in Single-Walled Carbon Nanotubes</title><author>Guse, Christa ; Hentschke, Reinhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a413t-3e027a2a7e774361a37958afc45e1f6e81b795da3825cacb1fbaa2ed975969a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>B: Macromolecules, Soft Matter</topic><topic>Confining</topic><topic>Constants</topic><topic>Density</topic><topic>Diffusion</topic><topic>Networks</topic><topic>Single wall carbon nanotubes</topic><topic>Thermodynamic properties</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guse, Christa</creatorcontrib><creatorcontrib>Hentschke, Reinhard</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guse, Christa</au><au>Hentschke, Reinhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation Study of Structural, Transport, and Thermodynamic Properties of TIP4P/2005 Water in Single-Walled Carbon Nanotubes</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2012-01-19</date><risdate>2012</risdate><volume>116</volume><issue>2</issue><spage>751</spage><epage>762</epage><pages>751-762</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Because carbon nanotubes lack a strong interaction with water, its hydrogen bond network is altered mainly by the confining geometry alone, allowing one to study its influence on the structure of water. Here structural, transport, and thermodynamic properties are investigated for TIP4P/2005 water confined in single-walled carbon nanotubes, possessing diameters from 11 to 50 Å. Temperatures range from 220 to 600 K for the two pressures studied, 1 and 1000 atm. The results, based on grand canonical Monte Carlo techniques, include heats of adsorption, temperature and diameter dependent densities, density profiles, diffusion constants, and pressure tensor components. The main findings comprise the suppression of the density maximum in tubes with diameters below 50–25 Å, indicating that structures responsible for this anomaly are of comparable size. Furthermore the axial pressure can be described within the continuum limit with deviations only appearing for diameters below 20 Å. The diffusion constants are similar to that of bulk water, demonstrating that the agility of the hydrogen bond network is preserved in the confining geometries considered here.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>22171918</pmid><doi>10.1021/jp210193w</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2012-01, Vol.116 (2), p.751-762
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_917159334
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects B: Macromolecules, Soft Matter
Confining
Constants
Density
Diffusion
Networks
Single wall carbon nanotubes
Thermodynamic properties
Transport
title Simulation Study of Structural, Transport, and Thermodynamic Properties of TIP4P/2005 Water in Single-Walled Carbon Nanotubes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A26%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20Study%20of%20Structural,%20Transport,%20and%20Thermodynamic%20Properties%20of%20TIP4P/2005%20Water%20in%20Single-Walled%20Carbon%20Nanotubes&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Guse,%20Christa&rft.date=2012-01-19&rft.volume=116&rft.issue=2&rft.spage=751&rft.epage=762&rft.pages=751-762&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp210193w&rft_dat=%3Cproquest_cross%3E917159334%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a413t-3e027a2a7e774361a37958afc45e1f6e81b795da3825cacb1fbaa2ed975969a53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1753478222&rft_id=info:pmid/22171918&rfr_iscdi=true