Loading…
Twenty-Fold Enhancement of Molecular Fluorescence by Coupling to a J-Aggregate Critically Coupled Resonator
We report a 20-fold enhancement in the fluorescence of the organic dye DCM when resonantly coupled to a strongly optically absorbing structure of a thin film of spin-deposited molecular J-aggregates in a critically coupled resonator (JCCR) geometry. A submonolayer equivalent of DCM molecules is show...
Saved in:
Published in: | ACS nano 2012-01, Vol.6 (1), p.467-471 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report a 20-fold enhancement in the fluorescence of the organic dye DCM when resonantly coupled to a strongly optically absorbing structure of a thin film of spin-deposited molecular J-aggregates in a critically coupled resonator (JCCR) geometry. A submonolayer equivalent of DCM molecules is shown to absorb and re-emit 2.2% of the incident resonant photons when coupled to the JCCR enhancement structure, compared to 0.1% for the bare film of same thickness on quartz. Such a JCCR structure is a general energy focusing platform that localizes over 90% of incident light energy within a 15 nm thin film layer in the form of excitons that can subsequently be transferred to colocated lumophores. Applications of the exciton-mediated concentration of optical energy are discussed in the context of solid-state lighting, photodetection, and single photon optics. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/nn203789t |