Loading…
Biochemical characterization and gene expression of two endo-arabinanases from Penicillium chrysogenum 31B
We previously described five arabinanolytic enzymes secreted by Penicillium chrysogenum 31B into the culture medium. Here, we describe a sixth such enzyme, termed AbnS1. Analysis of the reaction products of debranched arabinan revealed that AbnS1 cleaved the substrate in an endo manner. The optimum...
Saved in:
Published in: | Applied microbiology and biotechnology 2012-02, Vol.93 (3), p.1087-1096 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We previously described five arabinanolytic enzymes secreted by
Penicillium chrysogenum
31B into the culture medium. Here, we describe a sixth such enzyme, termed AbnS1. Analysis of the reaction products of debranched arabinan revealed that AbnS1 cleaved the substrate in an endo manner. The optimum temperature of AbnS1 was 60°C, which was much higher than that of a cold-adapted endo-arabinanase (Abnc) produced by this strain. The
abns1
cDNA gene encoding AbnS1 was isolated by in vitro cloning. The deduced amino acid sequence of AbnS1 had 70% identity with that of Abnc. Pfam analysis revealed a Glyco_hydro_43 domain at positions 28 to 318 of AbnS1. Semi-quantitative reverse transcription-polymerase chain reaction analysis indicated that the
abns1
gene was constitutively expressed in
P. chrysogenum
31B at a low level, although the expression was only slightly induced with arabinose and arabinan. In contrast, expression of the
abnc
gene encoding Abnc was strongly induced by arabinose, arabinitol, and arabinan. Using debranched arabinan as substrate, recombinant AbnS1 (rAbnS1) accumulated arabinobiose and arabinotriose as the major products. Recombinant Abnc (rAbnc) released mainly arabinotriose and lesser amounts of arabinose and arabinobiose than did rAbnS1. Branched arabinan was completely degraded to arabinose by the action of rAbnS1 or rAbnc in combination with α-
l
-arabinofuranosidase. |
---|---|
ISSN: | 0175-7598 1432-0614 |
DOI: | 10.1007/s00253-011-3452-7 |