Loading…
Field trial of a 1.5 Tb/s adaptive and gridless OXC supporting elastic 1000-fold all-optical bandwidth granularity
An adaptive gridless OXC is implemented using a 3D-MEMS optical backplane plus optical modules (sub-systems) that provide elastic spectrum and time switching functionality. The OXC adapts its architecture on demand to fulfill the switching requirements of incoming traffic. The system is implemented...
Saved in:
Published in: | Optics express 2011-12, Vol.19 (26), p.B235-B241 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An adaptive gridless OXC is implemented using a 3D-MEMS optical backplane plus optical modules (sub-systems) that provide elastic spectrum and time switching functionality. The OXC adapts its architecture on demand to fulfill the switching requirements of incoming traffic. The system is implemented in a seven-node network linked by installed fiber and is shown to provide suitable architectures on demand for three scenarios with increasing traffic and switching complexity. In the most complex scenario, signals of mixed bit-rates and modulation formats are successfully switched with flexible per-channel allocation of spectrum, time and space, achieving over 1000-fold bandwidth granularity and 1.5 Tb/s throughput with good end-to-end performance. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.19.00B235 |