Loading…
Model-based scale-up of vacuum contact drying of pharmaceutical compounds
An integrated methodology for the scale-up of vacuum contact drying with intermittent agitation is described in this work. The methodology combines a mathematical model of vacuum contact drying, based on differential transient heat and energy balances, and a small-scale experimental apparatus for mo...
Saved in:
Published in: | Chemical engineering science 2011-11, Vol.66 (21), p.5045-5054 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c416t-667fea334488e61f15ad7e6a1fc30ffc6b8f9dc7e55a557c0233d02b3a7bbc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c416t-667fea334488e61f15ad7e6a1fc30ffc6b8f9dc7e55a557c0233d02b3a7bbc3 |
container_end_page | 5054 |
container_issue | 21 |
container_start_page | 5045 |
container_title | Chemical engineering science |
container_volume | 66 |
creator | Murru, Marcello Giorgio, Giovanni Montomoli, Sara Ricard, Francois Stepanek, Frantisek |
description | An integrated methodology for the scale-up of vacuum contact drying with intermittent agitation is described in this work. The methodology combines a mathematical model of vacuum contact drying, based on differential transient heat and energy balances, and a small-scale experimental apparatus for model validation and parameter estimation. The validated model was used for the estimation of drying times of six different pharmaceutical compounds at the pilot and manufacturing scale over a range of drying conditions – pressure 15–200
mbar, temperature 45–70
°C, solvents: acetone, water, methanol, n-propanol, and isopropyl acetate. The mean difference between predicted and actual drying times for the six compounds was less than 9%, which is considered a significant improvement over current semi-empirical approaches to vacuum contact drying scale-up.
► We designed a methodology for the scale-up of vacuum contact drying. ► The mathematical model includes differential mass and energy balance. ► The model has been validated across scales with six pharmaceutical compounds. ► The average accuracy of the predicted drying time was 9%. |
doi_str_mv | 10.1016/j.ces.2011.06.059 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_918046485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009250911004453</els_id><sourcerecordid>1777125726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-667fea334488e61f15ad7e6a1fc30ffc6b8f9dc7e55a557c0233d02b3a7bbc3</originalsourceid><addsrcrecordid>eNp90c9r1jAYwPEgCnud_gE72YvopfVJ2_wonmRMHUw8bDuH9OmTmZe2qUk72H9vyjs87hRCPnkI3zB2waHiwOWXY4WUqho4r0BWILpX7MC1asq2BfGaHQCgK2sB3Rl7m9Ixb5XicGDXv8JAY9nbREOR0I5UbksRXPFocdumAsO8WlyLIT75-WE_WP7YOFmkbfWZZzAtYZuH9I69cXZM9P55PWe336_uLn-WN79_XF9-uymx5XItpVSObNO0rdYkuePCDoqk5Q4bcA5lr103oCIhrBAKoW6aAeq-sarvsTlnn05Tlxj-bpRWM_mENI52prAl03ENrWy1yPLzi5KrXKAWqpaZ8hPFGFKK5MwS_WTjk-Fg9rzmaHJes-c1IE3Om-98fB5v92wu2hl9-n-xboUAzXl2H07O2WDsQ8zm_jYPEvkLaq3VLr6eBOVqj56iSehpRhp8JFzNEPwL7_gH4ZOYzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777125726</pqid></control><display><type>article</type><title>Model-based scale-up of vacuum contact drying of pharmaceutical compounds</title><source>ScienceDirect Journals</source><creator>Murru, Marcello ; Giorgio, Giovanni ; Montomoli, Sara ; Ricard, Francois ; Stepanek, Frantisek</creator><creatorcontrib>Murru, Marcello ; Giorgio, Giovanni ; Montomoli, Sara ; Ricard, Francois ; Stepanek, Frantisek</creatorcontrib><description>An integrated methodology for the scale-up of vacuum contact drying with intermittent agitation is described in this work. The methodology combines a mathematical model of vacuum contact drying, based on differential transient heat and energy balances, and a small-scale experimental apparatus for model validation and parameter estimation. The validated model was used for the estimation of drying times of six different pharmaceutical compounds at the pilot and manufacturing scale over a range of drying conditions – pressure 15–200
mbar, temperature 45–70
°C, solvents: acetone, water, methanol, n-propanol, and isopropyl acetate. The mean difference between predicted and actual drying times for the six compounds was less than 9%, which is considered a significant improvement over current semi-empirical approaches to vacuum contact drying scale-up.
► We designed a methodology for the scale-up of vacuum contact drying. ► The mathematical model includes differential mass and energy balance. ► The model has been validated across scales with six pharmaceutical compounds. ► The average accuracy of the predicted drying time was 9%.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/j.ces.2011.06.059</identifier><identifier>CODEN: CESCAC</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>1-propanol ; acetates ; acetone ; agitation ; Applied sciences ; Chemical engineering ; Contact ; drugs ; Drying ; energy ; Exact sciences and technology ; heat ; Heat and mass transfer. Packings, plates ; Heat transfer ; manufacturing ; Mass transfer ; Mathematical modelling ; Mathematical models ; methanol ; Methodology ; Methyl alcohol ; model validation ; Pharmaceutical processing ; Pharmaceuticals ; Pilots ; Scale-up ; solvents ; temperature</subject><ispartof>Chemical engineering science, 2011-11, Vol.66 (21), p.5045-5054</ispartof><rights>2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-667fea334488e61f15ad7e6a1fc30ffc6b8f9dc7e55a557c0233d02b3a7bbc3</citedby><cites>FETCH-LOGICAL-c416t-667fea334488e61f15ad7e6a1fc30ffc6b8f9dc7e55a557c0233d02b3a7bbc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24550811$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Murru, Marcello</creatorcontrib><creatorcontrib>Giorgio, Giovanni</creatorcontrib><creatorcontrib>Montomoli, Sara</creatorcontrib><creatorcontrib>Ricard, Francois</creatorcontrib><creatorcontrib>Stepanek, Frantisek</creatorcontrib><title>Model-based scale-up of vacuum contact drying of pharmaceutical compounds</title><title>Chemical engineering science</title><description>An integrated methodology for the scale-up of vacuum contact drying with intermittent agitation is described in this work. The methodology combines a mathematical model of vacuum contact drying, based on differential transient heat and energy balances, and a small-scale experimental apparatus for model validation and parameter estimation. The validated model was used for the estimation of drying times of six different pharmaceutical compounds at the pilot and manufacturing scale over a range of drying conditions – pressure 15–200
mbar, temperature 45–70
°C, solvents: acetone, water, methanol, n-propanol, and isopropyl acetate. The mean difference between predicted and actual drying times for the six compounds was less than 9%, which is considered a significant improvement over current semi-empirical approaches to vacuum contact drying scale-up.
► We designed a methodology for the scale-up of vacuum contact drying. ► The mathematical model includes differential mass and energy balance. ► The model has been validated across scales with six pharmaceutical compounds. ► The average accuracy of the predicted drying time was 9%.</description><subject>1-propanol</subject><subject>acetates</subject><subject>acetone</subject><subject>agitation</subject><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Contact</subject><subject>drugs</subject><subject>Drying</subject><subject>energy</subject><subject>Exact sciences and technology</subject><subject>heat</subject><subject>Heat and mass transfer. Packings, plates</subject><subject>Heat transfer</subject><subject>manufacturing</subject><subject>Mass transfer</subject><subject>Mathematical modelling</subject><subject>Mathematical models</subject><subject>methanol</subject><subject>Methodology</subject><subject>Methyl alcohol</subject><subject>model validation</subject><subject>Pharmaceutical processing</subject><subject>Pharmaceuticals</subject><subject>Pilots</subject><subject>Scale-up</subject><subject>solvents</subject><subject>temperature</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp90c9r1jAYwPEgCnud_gE72YvopfVJ2_wonmRMHUw8bDuH9OmTmZe2qUk72H9vyjs87hRCPnkI3zB2waHiwOWXY4WUqho4r0BWILpX7MC1asq2BfGaHQCgK2sB3Rl7m9Ixb5XicGDXv8JAY9nbREOR0I5UbksRXPFocdumAsO8WlyLIT75-WE_WP7YOFmkbfWZZzAtYZuH9I69cXZM9P55PWe336_uLn-WN79_XF9-uymx5XItpVSObNO0rdYkuePCDoqk5Q4bcA5lr103oCIhrBAKoW6aAeq-sarvsTlnn05Tlxj-bpRWM_mENI52prAl03ENrWy1yPLzi5KrXKAWqpaZ8hPFGFKK5MwS_WTjk-Fg9rzmaHJes-c1IE3Om-98fB5v92wu2hl9-n-xboUAzXl2H07O2WDsQ8zm_jYPEvkLaq3VLr6eBOVqj56iSehpRhp8JFzNEPwL7_gH4ZOYzg</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Murru, Marcello</creator><creator>Giorgio, Giovanni</creator><creator>Montomoli, Sara</creator><creator>Ricard, Francois</creator><creator>Stepanek, Frantisek</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>20111101</creationdate><title>Model-based scale-up of vacuum contact drying of pharmaceutical compounds</title><author>Murru, Marcello ; Giorgio, Giovanni ; Montomoli, Sara ; Ricard, Francois ; Stepanek, Frantisek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-667fea334488e61f15ad7e6a1fc30ffc6b8f9dc7e55a557c0233d02b3a7bbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>1-propanol</topic><topic>acetates</topic><topic>acetone</topic><topic>agitation</topic><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Contact</topic><topic>drugs</topic><topic>Drying</topic><topic>energy</topic><topic>Exact sciences and technology</topic><topic>heat</topic><topic>Heat and mass transfer. Packings, plates</topic><topic>Heat transfer</topic><topic>manufacturing</topic><topic>Mass transfer</topic><topic>Mathematical modelling</topic><topic>Mathematical models</topic><topic>methanol</topic><topic>Methodology</topic><topic>Methyl alcohol</topic><topic>model validation</topic><topic>Pharmaceutical processing</topic><topic>Pharmaceuticals</topic><topic>Pilots</topic><topic>Scale-up</topic><topic>solvents</topic><topic>temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murru, Marcello</creatorcontrib><creatorcontrib>Giorgio, Giovanni</creatorcontrib><creatorcontrib>Montomoli, Sara</creatorcontrib><creatorcontrib>Ricard, Francois</creatorcontrib><creatorcontrib>Stepanek, Frantisek</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murru, Marcello</au><au>Giorgio, Giovanni</au><au>Montomoli, Sara</au><au>Ricard, Francois</au><au>Stepanek, Frantisek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-based scale-up of vacuum contact drying of pharmaceutical compounds</atitle><jtitle>Chemical engineering science</jtitle><date>2011-11-01</date><risdate>2011</risdate><volume>66</volume><issue>21</issue><spage>5045</spage><epage>5054</epage><pages>5045-5054</pages><issn>0009-2509</issn><eissn>1873-4405</eissn><coden>CESCAC</coden><abstract>An integrated methodology for the scale-up of vacuum contact drying with intermittent agitation is described in this work. The methodology combines a mathematical model of vacuum contact drying, based on differential transient heat and energy balances, and a small-scale experimental apparatus for model validation and parameter estimation. The validated model was used for the estimation of drying times of six different pharmaceutical compounds at the pilot and manufacturing scale over a range of drying conditions – pressure 15–200
mbar, temperature 45–70
°C, solvents: acetone, water, methanol, n-propanol, and isopropyl acetate. The mean difference between predicted and actual drying times for the six compounds was less than 9%, which is considered a significant improvement over current semi-empirical approaches to vacuum contact drying scale-up.
► We designed a methodology for the scale-up of vacuum contact drying. ► The mathematical model includes differential mass and energy balance. ► The model has been validated across scales with six pharmaceutical compounds. ► The average accuracy of the predicted drying time was 9%.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ces.2011.06.059</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-2509 |
ispartof | Chemical engineering science, 2011-11, Vol.66 (21), p.5045-5054 |
issn | 0009-2509 1873-4405 |
language | eng |
recordid | cdi_proquest_miscellaneous_918046485 |
source | ScienceDirect Journals |
subjects | 1-propanol acetates acetone agitation Applied sciences Chemical engineering Contact drugs Drying energy Exact sciences and technology heat Heat and mass transfer. Packings, plates Heat transfer manufacturing Mass transfer Mathematical modelling Mathematical models methanol Methodology Methyl alcohol model validation Pharmaceutical processing Pharmaceuticals Pilots Scale-up solvents temperature |
title | Model-based scale-up of vacuum contact drying of pharmaceutical compounds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A44%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-based%20scale-up%20of%20vacuum%20contact%20drying%20of%20pharmaceutical%20compounds&rft.jtitle=Chemical%20engineering%20science&rft.au=Murru,%20Marcello&rft.date=2011-11-01&rft.volume=66&rft.issue=21&rft.spage=5045&rft.epage=5054&rft.pages=5045-5054&rft.issn=0009-2509&rft.eissn=1873-4405&rft.coden=CESCAC&rft_id=info:doi/10.1016/j.ces.2011.06.059&rft_dat=%3Cproquest_cross%3E1777125726%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c416t-667fea334488e61f15ad7e6a1fc30ffc6b8f9dc7e55a557c0233d02b3a7bbc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1777125726&rft_id=info:pmid/&rfr_iscdi=true |