Loading…

Model-based scale-up of vacuum contact drying of pharmaceutical compounds

An integrated methodology for the scale-up of vacuum contact drying with intermittent agitation is described in this work. The methodology combines a mathematical model of vacuum contact drying, based on differential transient heat and energy balances, and a small-scale experimental apparatus for mo...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering science 2011-11, Vol.66 (21), p.5045-5054
Main Authors: Murru, Marcello, Giorgio, Giovanni, Montomoli, Sara, Ricard, Francois, Stepanek, Frantisek
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c416t-667fea334488e61f15ad7e6a1fc30ffc6b8f9dc7e55a557c0233d02b3a7bbc3
cites cdi_FETCH-LOGICAL-c416t-667fea334488e61f15ad7e6a1fc30ffc6b8f9dc7e55a557c0233d02b3a7bbc3
container_end_page 5054
container_issue 21
container_start_page 5045
container_title Chemical engineering science
container_volume 66
creator Murru, Marcello
Giorgio, Giovanni
Montomoli, Sara
Ricard, Francois
Stepanek, Frantisek
description An integrated methodology for the scale-up of vacuum contact drying with intermittent agitation is described in this work. The methodology combines a mathematical model of vacuum contact drying, based on differential transient heat and energy balances, and a small-scale experimental apparatus for model validation and parameter estimation. The validated model was used for the estimation of drying times of six different pharmaceutical compounds at the pilot and manufacturing scale over a range of drying conditions – pressure 15–200 mbar, temperature 45–70 °C, solvents: acetone, water, methanol, n-propanol, and isopropyl acetate. The mean difference between predicted and actual drying times for the six compounds was less than 9%, which is considered a significant improvement over current semi-empirical approaches to vacuum contact drying scale-up. ► We designed a methodology for the scale-up of vacuum contact drying. ► The mathematical model includes differential mass and energy balance. ► The model has been validated across scales with six pharmaceutical compounds. ► The average accuracy of the predicted drying time was 9%.
doi_str_mv 10.1016/j.ces.2011.06.059
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_918046485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009250911004453</els_id><sourcerecordid>1777125726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-667fea334488e61f15ad7e6a1fc30ffc6b8f9dc7e55a557c0233d02b3a7bbc3</originalsourceid><addsrcrecordid>eNp90c9r1jAYwPEgCnud_gE72YvopfVJ2_wonmRMHUw8bDuH9OmTmZe2qUk72H9vyjs87hRCPnkI3zB2waHiwOWXY4WUqho4r0BWILpX7MC1asq2BfGaHQCgK2sB3Rl7m9Ixb5XicGDXv8JAY9nbREOR0I5UbksRXPFocdumAsO8WlyLIT75-WE_WP7YOFmkbfWZZzAtYZuH9I69cXZM9P55PWe336_uLn-WN79_XF9-uymx5XItpVSObNO0rdYkuePCDoqk5Q4bcA5lr103oCIhrBAKoW6aAeq-sarvsTlnn05Tlxj-bpRWM_mENI52prAl03ENrWy1yPLzi5KrXKAWqpaZ8hPFGFKK5MwS_WTjk-Fg9rzmaHJes-c1IE3Om-98fB5v92wu2hl9-n-xboUAzXl2H07O2WDsQ8zm_jYPEvkLaq3VLr6eBOVqj56iSehpRhp8JFzNEPwL7_gH4ZOYzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777125726</pqid></control><display><type>article</type><title>Model-based scale-up of vacuum contact drying of pharmaceutical compounds</title><source>ScienceDirect Journals</source><creator>Murru, Marcello ; Giorgio, Giovanni ; Montomoli, Sara ; Ricard, Francois ; Stepanek, Frantisek</creator><creatorcontrib>Murru, Marcello ; Giorgio, Giovanni ; Montomoli, Sara ; Ricard, Francois ; Stepanek, Frantisek</creatorcontrib><description>An integrated methodology for the scale-up of vacuum contact drying with intermittent agitation is described in this work. The methodology combines a mathematical model of vacuum contact drying, based on differential transient heat and energy balances, and a small-scale experimental apparatus for model validation and parameter estimation. The validated model was used for the estimation of drying times of six different pharmaceutical compounds at the pilot and manufacturing scale over a range of drying conditions – pressure 15–200 mbar, temperature 45–70 °C, solvents: acetone, water, methanol, n-propanol, and isopropyl acetate. The mean difference between predicted and actual drying times for the six compounds was less than 9%, which is considered a significant improvement over current semi-empirical approaches to vacuum contact drying scale-up. ► We designed a methodology for the scale-up of vacuum contact drying. ► The mathematical model includes differential mass and energy balance. ► The model has been validated across scales with six pharmaceutical compounds. ► The average accuracy of the predicted drying time was 9%.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/j.ces.2011.06.059</identifier><identifier>CODEN: CESCAC</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>1-propanol ; acetates ; acetone ; agitation ; Applied sciences ; Chemical engineering ; Contact ; drugs ; Drying ; energy ; Exact sciences and technology ; heat ; Heat and mass transfer. Packings, plates ; Heat transfer ; manufacturing ; Mass transfer ; Mathematical modelling ; Mathematical models ; methanol ; Methodology ; Methyl alcohol ; model validation ; Pharmaceutical processing ; Pharmaceuticals ; Pilots ; Scale-up ; solvents ; temperature</subject><ispartof>Chemical engineering science, 2011-11, Vol.66 (21), p.5045-5054</ispartof><rights>2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-667fea334488e61f15ad7e6a1fc30ffc6b8f9dc7e55a557c0233d02b3a7bbc3</citedby><cites>FETCH-LOGICAL-c416t-667fea334488e61f15ad7e6a1fc30ffc6b8f9dc7e55a557c0233d02b3a7bbc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24550811$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Murru, Marcello</creatorcontrib><creatorcontrib>Giorgio, Giovanni</creatorcontrib><creatorcontrib>Montomoli, Sara</creatorcontrib><creatorcontrib>Ricard, Francois</creatorcontrib><creatorcontrib>Stepanek, Frantisek</creatorcontrib><title>Model-based scale-up of vacuum contact drying of pharmaceutical compounds</title><title>Chemical engineering science</title><description>An integrated methodology for the scale-up of vacuum contact drying with intermittent agitation is described in this work. The methodology combines a mathematical model of vacuum contact drying, based on differential transient heat and energy balances, and a small-scale experimental apparatus for model validation and parameter estimation. The validated model was used for the estimation of drying times of six different pharmaceutical compounds at the pilot and manufacturing scale over a range of drying conditions – pressure 15–200 mbar, temperature 45–70 °C, solvents: acetone, water, methanol, n-propanol, and isopropyl acetate. The mean difference between predicted and actual drying times for the six compounds was less than 9%, which is considered a significant improvement over current semi-empirical approaches to vacuum contact drying scale-up. ► We designed a methodology for the scale-up of vacuum contact drying. ► The mathematical model includes differential mass and energy balance. ► The model has been validated across scales with six pharmaceutical compounds. ► The average accuracy of the predicted drying time was 9%.</description><subject>1-propanol</subject><subject>acetates</subject><subject>acetone</subject><subject>agitation</subject><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Contact</subject><subject>drugs</subject><subject>Drying</subject><subject>energy</subject><subject>Exact sciences and technology</subject><subject>heat</subject><subject>Heat and mass transfer. Packings, plates</subject><subject>Heat transfer</subject><subject>manufacturing</subject><subject>Mass transfer</subject><subject>Mathematical modelling</subject><subject>Mathematical models</subject><subject>methanol</subject><subject>Methodology</subject><subject>Methyl alcohol</subject><subject>model validation</subject><subject>Pharmaceutical processing</subject><subject>Pharmaceuticals</subject><subject>Pilots</subject><subject>Scale-up</subject><subject>solvents</subject><subject>temperature</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp90c9r1jAYwPEgCnud_gE72YvopfVJ2_wonmRMHUw8bDuH9OmTmZe2qUk72H9vyjs87hRCPnkI3zB2waHiwOWXY4WUqho4r0BWILpX7MC1asq2BfGaHQCgK2sB3Rl7m9Ixb5XicGDXv8JAY9nbREOR0I5UbksRXPFocdumAsO8WlyLIT75-WE_WP7YOFmkbfWZZzAtYZuH9I69cXZM9P55PWe336_uLn-WN79_XF9-uymx5XItpVSObNO0rdYkuePCDoqk5Q4bcA5lr103oCIhrBAKoW6aAeq-sarvsTlnn05Tlxj-bpRWM_mENI52prAl03ENrWy1yPLzi5KrXKAWqpaZ8hPFGFKK5MwS_WTjk-Fg9rzmaHJes-c1IE3Om-98fB5v92wu2hl9-n-xboUAzXl2H07O2WDsQ8zm_jYPEvkLaq3VLr6eBOVqj56iSehpRhp8JFzNEPwL7_gH4ZOYzg</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Murru, Marcello</creator><creator>Giorgio, Giovanni</creator><creator>Montomoli, Sara</creator><creator>Ricard, Francois</creator><creator>Stepanek, Frantisek</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>20111101</creationdate><title>Model-based scale-up of vacuum contact drying of pharmaceutical compounds</title><author>Murru, Marcello ; Giorgio, Giovanni ; Montomoli, Sara ; Ricard, Francois ; Stepanek, Frantisek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-667fea334488e61f15ad7e6a1fc30ffc6b8f9dc7e55a557c0233d02b3a7bbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>1-propanol</topic><topic>acetates</topic><topic>acetone</topic><topic>agitation</topic><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Contact</topic><topic>drugs</topic><topic>Drying</topic><topic>energy</topic><topic>Exact sciences and technology</topic><topic>heat</topic><topic>Heat and mass transfer. Packings, plates</topic><topic>Heat transfer</topic><topic>manufacturing</topic><topic>Mass transfer</topic><topic>Mathematical modelling</topic><topic>Mathematical models</topic><topic>methanol</topic><topic>Methodology</topic><topic>Methyl alcohol</topic><topic>model validation</topic><topic>Pharmaceutical processing</topic><topic>Pharmaceuticals</topic><topic>Pilots</topic><topic>Scale-up</topic><topic>solvents</topic><topic>temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murru, Marcello</creatorcontrib><creatorcontrib>Giorgio, Giovanni</creatorcontrib><creatorcontrib>Montomoli, Sara</creatorcontrib><creatorcontrib>Ricard, Francois</creatorcontrib><creatorcontrib>Stepanek, Frantisek</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murru, Marcello</au><au>Giorgio, Giovanni</au><au>Montomoli, Sara</au><au>Ricard, Francois</au><au>Stepanek, Frantisek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-based scale-up of vacuum contact drying of pharmaceutical compounds</atitle><jtitle>Chemical engineering science</jtitle><date>2011-11-01</date><risdate>2011</risdate><volume>66</volume><issue>21</issue><spage>5045</spage><epage>5054</epage><pages>5045-5054</pages><issn>0009-2509</issn><eissn>1873-4405</eissn><coden>CESCAC</coden><abstract>An integrated methodology for the scale-up of vacuum contact drying with intermittent agitation is described in this work. The methodology combines a mathematical model of vacuum contact drying, based on differential transient heat and energy balances, and a small-scale experimental apparatus for model validation and parameter estimation. The validated model was used for the estimation of drying times of six different pharmaceutical compounds at the pilot and manufacturing scale over a range of drying conditions – pressure 15–200 mbar, temperature 45–70 °C, solvents: acetone, water, methanol, n-propanol, and isopropyl acetate. The mean difference between predicted and actual drying times for the six compounds was less than 9%, which is considered a significant improvement over current semi-empirical approaches to vacuum contact drying scale-up. ► We designed a methodology for the scale-up of vacuum contact drying. ► The mathematical model includes differential mass and energy balance. ► The model has been validated across scales with six pharmaceutical compounds. ► The average accuracy of the predicted drying time was 9%.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ces.2011.06.059</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-2509
ispartof Chemical engineering science, 2011-11, Vol.66 (21), p.5045-5054
issn 0009-2509
1873-4405
language eng
recordid cdi_proquest_miscellaneous_918046485
source ScienceDirect Journals
subjects 1-propanol
acetates
acetone
agitation
Applied sciences
Chemical engineering
Contact
drugs
Drying
energy
Exact sciences and technology
heat
Heat and mass transfer. Packings, plates
Heat transfer
manufacturing
Mass transfer
Mathematical modelling
Mathematical models
methanol
Methodology
Methyl alcohol
model validation
Pharmaceutical processing
Pharmaceuticals
Pilots
Scale-up
solvents
temperature
title Model-based scale-up of vacuum contact drying of pharmaceutical compounds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A44%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-based%20scale-up%20of%20vacuum%20contact%20drying%20of%20pharmaceutical%20compounds&rft.jtitle=Chemical%20engineering%20science&rft.au=Murru,%20Marcello&rft.date=2011-11-01&rft.volume=66&rft.issue=21&rft.spage=5045&rft.epage=5054&rft.pages=5045-5054&rft.issn=0009-2509&rft.eissn=1873-4405&rft.coden=CESCAC&rft_id=info:doi/10.1016/j.ces.2011.06.059&rft_dat=%3Cproquest_cross%3E1777125726%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c416t-667fea334488e61f15ad7e6a1fc30ffc6b8f9dc7e55a557c0233d02b3a7bbc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1777125726&rft_id=info:pmid/&rfr_iscdi=true