Loading…
Quantitative Structure−Property Relationships for Predicting Metal Binding by Organic Ligands
Quantitative structure−property relationships (QSPRs) are developed to predict the complexation of Al(III), Ca(II), Cd(II), Cu(II), Ni(II), Pb(II), and Zn(II) by organic ligands containing carboxylate, phenol, amine, ether, and alcohol functional groups. These QSPRs predict conditional stability con...
Saved in:
Published in: | Environmental science & technology 2008-07, Vol.42 (14), p.5210-5216 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a383t-6adf134ae0486d492cb996d32c038f52964b60113bc88831138bf27681a385e83 |
---|---|
cites | cdi_FETCH-LOGICAL-a383t-6adf134ae0486d492cb996d32c038f52964b60113bc88831138bf27681a385e83 |
container_end_page | 5216 |
container_issue | 14 |
container_start_page | 5210 |
container_title | Environmental science & technology |
container_volume | 42 |
creator | Cabaniss, Stephen E |
description | Quantitative structure−property relationships (QSPRs) are developed to predict the complexation of Al(III), Ca(II), Cd(II), Cu(II), Ni(II), Pb(II), and Zn(II) by organic ligands containing carboxylate, phenol, amine, ether, and alcohol functional groups. These QSPRs predict conditional stability constants (K M′ at pH 7.0 and I = 0.1) over a range of ligand types with consistent uncertainties of ∼1 log unit without requiring any steric or connectivity information. Calibration and validation data sets were constructed using 1:1 complex formation constants from the NIST Critical Stability Constants database (version 8.0). The descriptor variables are intuitive quantities conceptually related to metal binding, such as the numbers of various ligand groups, charge density, etc. The resulting calibrations have r 2 = 0.87 to 0.93 and S pred = 0.67 to 1.05 log units, with positive values for all ligand count descriptor variables. The QSPRs account for 75−95% of the variability in the validation data set with RMSE of 0.74 to 1.30 log units. These QSPRs improve upon previous work by providing a tested and mechanistically reasonable method for log K M′ prediction with uncertainties comparable to or better than other QSPRs calibrated with groups of diverse ligands. |
doi_str_mv | 10.1021/es7022219 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_918047191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69478045</sourcerecordid><originalsourceid>FETCH-LOGICAL-a383t-6adf134ae0486d492cb996d32c038f52964b60113bc88831138bf27681a385e83</originalsourceid><addsrcrecordid>eNp90MFO3DAQBmCrApWF9sALoFyg4hDqsRPHPgJqAbHVhrJI3CzHccBLNllsB3XfoOc-Yp-kRrtaLqin8Wi-GUs_QvuATwAT-Gp8gQkhID6gEeQEpznPYQuNMAaaCsrud9Cu9zOMMaGYf0Q7wIs8owWMkLwZVBdsUMG-mOQ2uEGHwZm_v_-Url8YF5bJT9PGad_5R7vwSdO7pHSmtjrY7iH5YYJqkzPb1a9dtUwm7kF1VidjG2vtP6HtRrXefF7XPXT3_dv0_DIdTy6uzk_HqaKchpSpugGaKYMzzupMEF0JwWpKNKa8yYlgWcUwAK0055zGB68aUjAOcT83nO6hL6u7C9c_D8YHObdem7ZVnekHLwVwnBUgIMqj_0omsiLaPMLjFdSu996ZRi6cnSu3lIDla-5yk3u0B-ujQzU39ZtcBx1BugLWB_NrM1fuSbKCFrmclrfy5hJKWoprSaI_XHmlvZz1g-tieu98_A_un5iq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69478045</pqid></control><display><type>article</type><title>Quantitative Structure−Property Relationships for Predicting Metal Binding by Organic Ligands</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Cabaniss, Stephen E</creator><creatorcontrib>Cabaniss, Stephen E</creatorcontrib><description>Quantitative structure−property relationships (QSPRs) are developed to predict the complexation of Al(III), Ca(II), Cd(II), Cu(II), Ni(II), Pb(II), and Zn(II) by organic ligands containing carboxylate, phenol, amine, ether, and alcohol functional groups. These QSPRs predict conditional stability constants (K M′ at pH 7.0 and I = 0.1) over a range of ligand types with consistent uncertainties of ∼1 log unit without requiring any steric or connectivity information. Calibration and validation data sets were constructed using 1:1 complex formation constants from the NIST Critical Stability Constants database (version 8.0). The descriptor variables are intuitive quantities conceptually related to metal binding, such as the numbers of various ligand groups, charge density, etc. The resulting calibrations have r 2 = 0.87 to 0.93 and S pred = 0.67 to 1.05 log units, with positive values for all ligand count descriptor variables. The QSPRs account for 75−95% of the variability in the validation data set with RMSE of 0.74 to 1.30 log units. These QSPRs improve upon previous work by providing a tested and mechanistically reasonable method for log K M′ prediction with uncertainties comparable to or better than other QSPRs calibrated with groups of diverse ligands.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es7022219</identifier><identifier>PMID: 18754371</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Environmental Modeling ; Ligands ; Metals - chemistry ; Metals - metabolism ; Organic Chemicals - chemistry ; Organic Chemicals - metabolism ; Quantitative Structure-Activity Relationship ; Reproducibility of Results ; Thermodynamics</subject><ispartof>Environmental science & technology, 2008-07, Vol.42 (14), p.5210-5216</ispartof><rights>Copyright © 2008 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a383t-6adf134ae0486d492cb996d32c038f52964b60113bc88831138bf27681a385e83</citedby><cites>FETCH-LOGICAL-a383t-6adf134ae0486d492cb996d32c038f52964b60113bc88831138bf27681a385e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18754371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cabaniss, Stephen E</creatorcontrib><title>Quantitative Structure−Property Relationships for Predicting Metal Binding by Organic Ligands</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Quantitative structure−property relationships (QSPRs) are developed to predict the complexation of Al(III), Ca(II), Cd(II), Cu(II), Ni(II), Pb(II), and Zn(II) by organic ligands containing carboxylate, phenol, amine, ether, and alcohol functional groups. These QSPRs predict conditional stability constants (K M′ at pH 7.0 and I = 0.1) over a range of ligand types with consistent uncertainties of ∼1 log unit without requiring any steric or connectivity information. Calibration and validation data sets were constructed using 1:1 complex formation constants from the NIST Critical Stability Constants database (version 8.0). The descriptor variables are intuitive quantities conceptually related to metal binding, such as the numbers of various ligand groups, charge density, etc. The resulting calibrations have r 2 = 0.87 to 0.93 and S pred = 0.67 to 1.05 log units, with positive values for all ligand count descriptor variables. The QSPRs account for 75−95% of the variability in the validation data set with RMSE of 0.74 to 1.30 log units. These QSPRs improve upon previous work by providing a tested and mechanistically reasonable method for log K M′ prediction with uncertainties comparable to or better than other QSPRs calibrated with groups of diverse ligands.</description><subject>Environmental Modeling</subject><subject>Ligands</subject><subject>Metals - chemistry</subject><subject>Metals - metabolism</subject><subject>Organic Chemicals - chemistry</subject><subject>Organic Chemicals - metabolism</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>Reproducibility of Results</subject><subject>Thermodynamics</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp90MFO3DAQBmCrApWF9sALoFyg4hDqsRPHPgJqAbHVhrJI3CzHccBLNllsB3XfoOc-Yp-kRrtaLqin8Wi-GUs_QvuATwAT-Gp8gQkhID6gEeQEpznPYQuNMAaaCsrud9Cu9zOMMaGYf0Q7wIs8owWMkLwZVBdsUMG-mOQ2uEGHwZm_v_-Url8YF5bJT9PGad_5R7vwSdO7pHSmtjrY7iH5YYJqkzPb1a9dtUwm7kF1VidjG2vtP6HtRrXefF7XPXT3_dv0_DIdTy6uzk_HqaKchpSpugGaKYMzzupMEF0JwWpKNKa8yYlgWcUwAK0055zGB68aUjAOcT83nO6hL6u7C9c_D8YHObdem7ZVnekHLwVwnBUgIMqj_0omsiLaPMLjFdSu996ZRi6cnSu3lIDla-5yk3u0B-ujQzU39ZtcBx1BugLWB_NrM1fuSbKCFrmclrfy5hJKWoprSaI_XHmlvZz1g-tieu98_A_un5iq</recordid><startdate>20080715</startdate><enddate>20080715</enddate><creator>Cabaniss, Stephen E</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20080715</creationdate><title>Quantitative Structure−Property Relationships for Predicting Metal Binding by Organic Ligands</title><author>Cabaniss, Stephen E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a383t-6adf134ae0486d492cb996d32c038f52964b60113bc88831138bf27681a385e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Environmental Modeling</topic><topic>Ligands</topic><topic>Metals - chemistry</topic><topic>Metals - metabolism</topic><topic>Organic Chemicals - chemistry</topic><topic>Organic Chemicals - metabolism</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>Reproducibility of Results</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cabaniss, Stephen E</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cabaniss, Stephen E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative Structure−Property Relationships for Predicting Metal Binding by Organic Ligands</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2008-07-15</date><risdate>2008</risdate><volume>42</volume><issue>14</issue><spage>5210</spage><epage>5216</epage><pages>5210-5216</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Quantitative structure−property relationships (QSPRs) are developed to predict the complexation of Al(III), Ca(II), Cd(II), Cu(II), Ni(II), Pb(II), and Zn(II) by organic ligands containing carboxylate, phenol, amine, ether, and alcohol functional groups. These QSPRs predict conditional stability constants (K M′ at pH 7.0 and I = 0.1) over a range of ligand types with consistent uncertainties of ∼1 log unit without requiring any steric or connectivity information. Calibration and validation data sets were constructed using 1:1 complex formation constants from the NIST Critical Stability Constants database (version 8.0). The descriptor variables are intuitive quantities conceptually related to metal binding, such as the numbers of various ligand groups, charge density, etc. The resulting calibrations have r 2 = 0.87 to 0.93 and S pred = 0.67 to 1.05 log units, with positive values for all ligand count descriptor variables. The QSPRs account for 75−95% of the variability in the validation data set with RMSE of 0.74 to 1.30 log units. These QSPRs improve upon previous work by providing a tested and mechanistically reasonable method for log K M′ prediction with uncertainties comparable to or better than other QSPRs calibrated with groups of diverse ligands.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>18754371</pmid><doi>10.1021/es7022219</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2008-07, Vol.42 (14), p.5210-5216 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_918047191 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Environmental Modeling Ligands Metals - chemistry Metals - metabolism Organic Chemicals - chemistry Organic Chemicals - metabolism Quantitative Structure-Activity Relationship Reproducibility of Results Thermodynamics |
title | Quantitative Structure−Property Relationships for Predicting Metal Binding by Organic Ligands |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A15%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20Structure%E2%88%92Property%20Relationships%20for%20Predicting%20Metal%20Binding%20by%20Organic%20Ligands&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Cabaniss,%20Stephen%20E&rft.date=2008-07-15&rft.volume=42&rft.issue=14&rft.spage=5210&rft.epage=5216&rft.pages=5210-5216&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/es7022219&rft_dat=%3Cproquest_cross%3E69478045%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a383t-6adf134ae0486d492cb996d32c038f52964b60113bc88831138bf27681a385e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=69478045&rft_id=info:pmid/18754371&rfr_iscdi=true |