Loading…

Handling uncertainty in housing stock models

Housing stock models can be useful tools in helping to assess the environmental and socio-economic impacts of retrofits to residential buildings; however, existing housing stock models are not able to quantify the uncertainties that arise in the modelling process from various sources, thus limiting...

Full description

Saved in:
Bibliographic Details
Published in:Building and environment 2012-02, Vol.48 (FEV), p.35-47
Main Authors: Booth, A.T., Choudhary, R., Spiegelhalter, D.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c407t-fa4252ccfb3bbcd2456921b5eec27b5708fb4f7e2a018ba348ab6090cee731613
cites cdi_FETCH-LOGICAL-c407t-fa4252ccfb3bbcd2456921b5eec27b5708fb4f7e2a018ba348ab6090cee731613
container_end_page 47
container_issue FEV
container_start_page 35
container_title Building and environment
container_volume 48
creator Booth, A.T.
Choudhary, R.
Spiegelhalter, D.J.
description Housing stock models can be useful tools in helping to assess the environmental and socio-economic impacts of retrofits to residential buildings; however, existing housing stock models are not able to quantify the uncertainties that arise in the modelling process from various sources, thus limiting the role that they can play in helping decision makers. This paper examines the different sources of uncertainty involved in housing stock models and proposes a framework for handling these uncertainties. This framework involves integrating probabilistic sensitivity analysis with a Bayesian calibration process in order to quantify uncertain parameters more accurately. The proposed framework is tested on a case study building, and suggestions are made on how to expand the framework for retrofit analysis at an urban-scale. ► Previous housing stock models are reviewed. ► The sources of uncertainty in housing stock energy models are outlined. ► A framework for handling these sources of uncertainty is proposed. ► Bayesian calibration of uncertain model parameters is investigated. ► Methods for extending the calibration framework are described.
doi_str_mv 10.1016/j.buildenv.2011.08.016
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_918053723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360132311002599</els_id><sourcerecordid>918053723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-fa4252ccfb3bbcd2456921b5eec27b5708fb4f7e2a018ba348ab6090cee731613</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKt_QXoRPbhrvjbJ3pSiVih4UfAWkuyspm53a7Jb6L83pdWjngZenndmeBA6JzgnmIibRW4H31TQrnOKCcmxylN8gEZESZYJxd8O0QgzgTPCKDtGJzEucCJKxkfoembaqvHt-2RoHYTe-LbfTHw7-eiGuI1j37nPybKroImn6Kg2TYSz_Ryj14f7l-ksmz8_Pk3v5pnjWPZZbTgtqHO1Zda6ivJClJTYAsBRaQuJVW15LYEaTJQ1jCtjBS6xA5CMCMLG6HK3dxW6rwFir5c-Omga00J6S5dE4YJJyhJ59SdJpJSEl0LhhIod6kIXY4Bar4JfmrDRBOutSL3QPyL1VqTGSqc4FS_2N0x0pqmDaZ2Pv23KhRKs3P5yu-OSKVh7CDo6D8lq5QO4Xled_-_UNxsQjAI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777149680</pqid></control><display><type>article</type><title>Handling uncertainty in housing stock models</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Booth, A.T. ; Choudhary, R. ; Spiegelhalter, D.J.</creator><creatorcontrib>Booth, A.T. ; Choudhary, R. ; Spiegelhalter, D.J.</creatorcontrib><description>Housing stock models can be useful tools in helping to assess the environmental and socio-economic impacts of retrofits to residential buildings; however, existing housing stock models are not able to quantify the uncertainties that arise in the modelling process from various sources, thus limiting the role that they can play in helping decision makers. This paper examines the different sources of uncertainty involved in housing stock models and proposes a framework for handling these uncertainties. This framework involves integrating probabilistic sensitivity analysis with a Bayesian calibration process in order to quantify uncertain parameters more accurately. The proposed framework is tested on a case study building, and suggestions are made on how to expand the framework for retrofit analysis at an urban-scale. ► Previous housing stock models are reviewed. ► The sources of uncertainty in housing stock energy models are outlined. ► A framework for handling these sources of uncertainty is proposed. ► Bayesian calibration of uncertain model parameters is investigated. ► Methods for extending the calibration framework are described.</description><identifier>ISSN: 0360-1323</identifier><identifier>EISSN: 1873-684X</identifier><identifier>DOI: 10.1016/j.buildenv.2011.08.016</identifier><identifier>CODEN: BUENDB</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Bayesian ; Building technical equipments ; Buildings ; Buildings. Public works ; Calibration ; Computation methods. Tables. Charts ; Constraining ; Energy ; Energy management and energy conservation in building ; Environmental engineering ; Exact sciences and technology ; Handling ; Housing ; Materials handling ; Raw materials ; Residential building ; Retrofitting ; Sensitivity analysis ; Stock ; Structural analysis. Stresses ; Types of buildings ; Uncertainty</subject><ispartof>Building and environment, 2012-02, Vol.48 (FEV), p.35-47</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-fa4252ccfb3bbcd2456921b5eec27b5708fb4f7e2a018ba348ab6090cee731613</citedby><cites>FETCH-LOGICAL-c407t-fa4252ccfb3bbcd2456921b5eec27b5708fb4f7e2a018ba348ab6090cee731613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24686393$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Booth, A.T.</creatorcontrib><creatorcontrib>Choudhary, R.</creatorcontrib><creatorcontrib>Spiegelhalter, D.J.</creatorcontrib><title>Handling uncertainty in housing stock models</title><title>Building and environment</title><description>Housing stock models can be useful tools in helping to assess the environmental and socio-economic impacts of retrofits to residential buildings; however, existing housing stock models are not able to quantify the uncertainties that arise in the modelling process from various sources, thus limiting the role that they can play in helping decision makers. This paper examines the different sources of uncertainty involved in housing stock models and proposes a framework for handling these uncertainties. This framework involves integrating probabilistic sensitivity analysis with a Bayesian calibration process in order to quantify uncertain parameters more accurately. The proposed framework is tested on a case study building, and suggestions are made on how to expand the framework for retrofit analysis at an urban-scale. ► Previous housing stock models are reviewed. ► The sources of uncertainty in housing stock energy models are outlined. ► A framework for handling these sources of uncertainty is proposed. ► Bayesian calibration of uncertain model parameters is investigated. ► Methods for extending the calibration framework are described.</description><subject>Applied sciences</subject><subject>Bayesian</subject><subject>Building technical equipments</subject><subject>Buildings</subject><subject>Buildings. Public works</subject><subject>Calibration</subject><subject>Computation methods. Tables. Charts</subject><subject>Constraining</subject><subject>Energy</subject><subject>Energy management and energy conservation in building</subject><subject>Environmental engineering</subject><subject>Exact sciences and technology</subject><subject>Handling</subject><subject>Housing</subject><subject>Materials handling</subject><subject>Raw materials</subject><subject>Residential building</subject><subject>Retrofitting</subject><subject>Sensitivity analysis</subject><subject>Stock</subject><subject>Structural analysis. Stresses</subject><subject>Types of buildings</subject><subject>Uncertainty</subject><issn>0360-1323</issn><issn>1873-684X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKt_QXoRPbhrvjbJ3pSiVih4UfAWkuyspm53a7Jb6L83pdWjngZenndmeBA6JzgnmIibRW4H31TQrnOKCcmxylN8gEZESZYJxd8O0QgzgTPCKDtGJzEucCJKxkfoembaqvHt-2RoHYTe-LbfTHw7-eiGuI1j37nPybKroImn6Kg2TYSz_Ryj14f7l-ksmz8_Pk3v5pnjWPZZbTgtqHO1Zda6ivJClJTYAsBRaQuJVW15LYEaTJQ1jCtjBS6xA5CMCMLG6HK3dxW6rwFir5c-Omga00J6S5dE4YJJyhJ59SdJpJSEl0LhhIod6kIXY4Bar4JfmrDRBOutSL3QPyL1VqTGSqc4FS_2N0x0pqmDaZ2Pv23KhRKs3P5yu-OSKVh7CDo6D8lq5QO4Xled_-_UNxsQjAI</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Booth, A.T.</creator><creator>Choudhary, R.</creator><creator>Spiegelhalter, D.J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>20120201</creationdate><title>Handling uncertainty in housing stock models</title><author>Booth, A.T. ; Choudhary, R. ; Spiegelhalter, D.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-fa4252ccfb3bbcd2456921b5eec27b5708fb4f7e2a018ba348ab6090cee731613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Bayesian</topic><topic>Building technical equipments</topic><topic>Buildings</topic><topic>Buildings. Public works</topic><topic>Calibration</topic><topic>Computation methods. Tables. Charts</topic><topic>Constraining</topic><topic>Energy</topic><topic>Energy management and energy conservation in building</topic><topic>Environmental engineering</topic><topic>Exact sciences and technology</topic><topic>Handling</topic><topic>Housing</topic><topic>Materials handling</topic><topic>Raw materials</topic><topic>Residential building</topic><topic>Retrofitting</topic><topic>Sensitivity analysis</topic><topic>Stock</topic><topic>Structural analysis. Stresses</topic><topic>Types of buildings</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Booth, A.T.</creatorcontrib><creatorcontrib>Choudhary, R.</creatorcontrib><creatorcontrib>Spiegelhalter, D.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Building and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Booth, A.T.</au><au>Choudhary, R.</au><au>Spiegelhalter, D.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Handling uncertainty in housing stock models</atitle><jtitle>Building and environment</jtitle><date>2012-02-01</date><risdate>2012</risdate><volume>48</volume><issue>FEV</issue><spage>35</spage><epage>47</epage><pages>35-47</pages><issn>0360-1323</issn><eissn>1873-684X</eissn><coden>BUENDB</coden><abstract>Housing stock models can be useful tools in helping to assess the environmental and socio-economic impacts of retrofits to residential buildings; however, existing housing stock models are not able to quantify the uncertainties that arise in the modelling process from various sources, thus limiting the role that they can play in helping decision makers. This paper examines the different sources of uncertainty involved in housing stock models and proposes a framework for handling these uncertainties. This framework involves integrating probabilistic sensitivity analysis with a Bayesian calibration process in order to quantify uncertain parameters more accurately. The proposed framework is tested on a case study building, and suggestions are made on how to expand the framework for retrofit analysis at an urban-scale. ► Previous housing stock models are reviewed. ► The sources of uncertainty in housing stock energy models are outlined. ► A framework for handling these sources of uncertainty is proposed. ► Bayesian calibration of uncertain model parameters is investigated. ► Methods for extending the calibration framework are described.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.buildenv.2011.08.016</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-1323
ispartof Building and environment, 2012-02, Vol.48 (FEV), p.35-47
issn 0360-1323
1873-684X
language eng
recordid cdi_proquest_miscellaneous_918053723
source ScienceDirect Freedom Collection 2022-2024
subjects Applied sciences
Bayesian
Building technical equipments
Buildings
Buildings. Public works
Calibration
Computation methods. Tables. Charts
Constraining
Energy
Energy management and energy conservation in building
Environmental engineering
Exact sciences and technology
Handling
Housing
Materials handling
Raw materials
Residential building
Retrofitting
Sensitivity analysis
Stock
Structural analysis. Stresses
Types of buildings
Uncertainty
title Handling uncertainty in housing stock models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A38%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Handling%20uncertainty%20in%20housing%20stock%20models&rft.jtitle=Building%20and%20environment&rft.au=Booth,%20A.T.&rft.date=2012-02-01&rft.volume=48&rft.issue=FEV&rft.spage=35&rft.epage=47&rft.pages=35-47&rft.issn=0360-1323&rft.eissn=1873-684X&rft.coden=BUENDB&rft_id=info:doi/10.1016/j.buildenv.2011.08.016&rft_dat=%3Cproquest_cross%3E918053723%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-fa4252ccfb3bbcd2456921b5eec27b5708fb4f7e2a018ba348ab6090cee731613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1777149680&rft_id=info:pmid/&rfr_iscdi=true