Loading…

Hierarchically structured titanium foams for tissue scaffold applications

We present a novel route for producing a new class of titanium foams for use in biomedical implant applications. These foams are hierarchically porous, with both the traditional large (>300 μm) highly interconnected pores and, uniquely, wall struts also containing micron scale (0.5–5 μm) intercon...

Full description

Saved in:
Bibliographic Details
Published in:Acta biomaterialia 2010-12, Vol.6 (12), p.4596-4604
Main Authors: Singh, R., Lee, P.D., Jones, J.R., Poologasundarampillai, G., Post, T., Lindley, T.C., Dashwood, R.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a novel route for producing a new class of titanium foams for use in biomedical implant applications. These foams are hierarchically porous, with both the traditional large (>300 μm) highly interconnected pores and, uniquely, wall struts also containing micron scale (0.5–5 μm) interconnected porosities. The fabrication method consists of first producing a porous oxide precursor via a gel casting method, followed by electrochemical reduction to produce a metallic foam. This method offers the unique ability to tailor the porosity at several scales independently, unlike traditional space-holder techniques. Reducing the pressure during foam setting increased the macro-pore size. The intra-strut pore size (and percentage) can be controlled independently of macro-pore size by altering the ceramic loading and sintering temperature during precursor production. Typical properties for an 80% porous Ti foam were a modulus of ∼1 GPa, a yield strength of 8 MPa and a permeability of 350 Darcies, all of which are in the range required for biomedical implant applications. We also demonstrate that the micron scale intra-strut porosities can be exploited to allow infiltration of bioactive materials using a novel bioactive silica–polymer composite, resulting in a metal–bioactive silica–polymer composite.
ISSN:1742-7061
1878-7568
DOI:10.1016/j.actbio.2010.06.027