Loading…
Proteomics reveals selective regulation of proteins in response to memory-related serotonin stimulation in Aplysia californica ganglia
The marine mollusk Aplysia californica (Aplysia) is a powerful model for learning and memory due to its minimalistic nervous system. Key proteins, identified to be regulated by the neurotransmitter serotonin in Aplysia, have been successfully translated to mammalian models of learning and memory. Ba...
Saved in:
Published in: | Proteomics (Weinheim) 2012-02, Vol.12 (3), p.490-499 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The marine mollusk Aplysia californica (Aplysia) is a powerful model for learning and memory due to its minimalistic nervous system. Key proteins, identified to be regulated by the neurotransmitter serotonin in Aplysia, have been successfully translated to mammalian models of learning and memory. Based upon a recently published large‐scale analysis of Aplysia proteomic data, the current study investigated the regulation of protein levels 24 and 48 h after treatment with serotonin in Aplysia ganglia using a 2‐D gel electrophoresis approach. Protein spots were quantified and protein‐level changes of selected proteins were verified by Western blotting. Among those were Rab GDP dissociation inhibitor alpha (RabGDIα), synaptotagmin‐1 and deleted in azoospermia‐associated protein (DAZAP‐1) in cerebral ganglia, calreticulin, RabGDIα, DAZAP‐1, heterogeneous nuclear ribonucleoprotein F (hnRNPF), RACK‐1 and actin‐depolymerizing factor (ADF) in pleural ganglia and DAZAP‐1, hnRNPF and ADF in pedal ganglia. Protein identity of the majority of spots was confirmed by a gel‐based mass spectrometrical method (FT‐MS). Taken together, protein‐level changes induced by the learning‐related neurotransmitter serotonin in Aplysia ganglia are described and a role for the abovementioned proteins in synaptic plasticity is proposed. |
---|---|
ISSN: | 1615-9853 1615-9861 |
DOI: | 10.1002/pmic.201100418 |