Loading…

Study of an upper arm exoskeleton for gravity balancing and minimization of transmitted forces

An upper-arm wearable exoskeleton has been designed for the assistance and functional training of humans. One of the goals of this design is to provide passive assistance to a user by gravity balancing, while keeping the transmitted forces to the shoulder joints at a minimum. Consistent with this go...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine Journal of engineering in medicine, 2011-11, Vol.225 (11), p.1025-1035
Main Authors: Dubey, V N, Agrawal, S K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An upper-arm wearable exoskeleton has been designed for the assistance and functional training of humans. One of the goals of this design is to provide passive assistance to a user by gravity balancing, while keeping the transmitted forces to the shoulder joints at a minimum. Consistent with this goal, this paper discusses: analytical gravity balancing design conditions for the structure of the exoskeleton; a possible implementation of these conditions into practical designs; the minimization of transmitted joint forces to the shoulder while satisfying the gravity balancing conditions; the numerical optimization of the system for gravity balancing and minimization of transmitted forces; and the effect of parameter variation on joint moments and joint forces via numerical optimization. An implementation of the design was undertaken using zero-free-length springs. The design idea presented in this paper may be useful in relieving the actuators effort of exoskeletons to support the weight of the arm and therefore the possibility of using small actuators and making the system light and portable or even a stand-alone passive support device can be developed based on these gravity balancing conditions.
ISSN:0954-4119
2041-3033
DOI:10.1177/0954411911420664