Loading…

Estimates for the asymptotic convergence factor of two intervals

Let E be the union of two real intervals not containing zero. Then L n r ( E ) denotes the supremum norm of that polynomial P n of degree less than or equal to n , which is minimal with respect to the supremum norm provided that P n ( 0 ) = 1 . It is well known that the limit κ ( E ) ≔ lim n → ∞ L n...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and applied mathematics 2011-08, Vol.236 (1), p.28-38
Main Author: Schiefermayr, Klaus
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-38c512a302bf4685d0b5d586efb6fbe875fe3e0bd9b42592034a66266b725d383
cites cdi_FETCH-LOGICAL-c402t-38c512a302bf4685d0b5d586efb6fbe875fe3e0bd9b42592034a66266b725d383
container_end_page 38
container_issue 1
container_start_page 28
container_title Journal of computational and applied mathematics
container_volume 236
creator Schiefermayr, Klaus
description Let E be the union of two real intervals not containing zero. Then L n r ( E ) denotes the supremum norm of that polynomial P n of degree less than or equal to n , which is minimal with respect to the supremum norm provided that P n ( 0 ) = 1 . It is well known that the limit κ ( E ) ≔ lim n → ∞ L n r ( E ) n exists, where κ ( E ) is called the asymptotic convergence factor, since it plays a crucial role for certain iterative methods solving large-scale matrix problems. The factor κ ( E ) can be expressed with the help of Jacobi’s elliptic and theta functions, where this representation is very involved. In this paper, we give precise upper and lower bounds for κ ( E ) in terms of elementary functions of the endpoints of E .
doi_str_mv 10.1016/j.cam.2010.06.008
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919907111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042710003523</els_id><sourcerecordid>919907111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-38c512a302bf4685d0b5d586efb6fbe875fe3e0bd9b42592034a66266b725d383</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNtexNOuk-xusosXpdQPKHjRc8hmJ5rS3dQkrfTfm9Li0dPLwDMzvA8h1xQKCpTfLQuthoJBmoEXAM0JmdBGtDkVojklEyiFyKFi4pxchLAEAN7SakIe5iHaQUUMmXE-i1-YqbAb1tFFqzPtxi36Txw1ZkbpmAhnsvjjMjtG9Fu1CpfkzKTAq2NOycfT_H32ki_enl9nj4tcV8BiXja6pkyVwDpT8abuoav7uuFoOm46bERtsETo-rarWN0yKCvFOeO8E6zuy6acktvD3bV33xsMUQ42aFyt1IhuE2RL2xYEpTSR9EBq70LwaOTap4p-JynIvSy5lEmW3MuSwGWSlXZujtdV0GplvBq1DX-LrOK0rigk7v7AYaq6tehl0Havp7cedZS9s_98-QXU_X5r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919907111</pqid></control><display><type>article</type><title>Estimates for the asymptotic convergence factor of two intervals</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Schiefermayr, Klaus</creator><creatorcontrib>Schiefermayr, Klaus</creatorcontrib><description>Let E be the union of two real intervals not containing zero. Then L n r ( E ) denotes the supremum norm of that polynomial P n of degree less than or equal to n , which is minimal with respect to the supremum norm provided that P n ( 0 ) = 1 . It is well known that the limit κ ( E ) ≔ lim n → ∞ L n r ( E ) n exists, where κ ( E ) is called the asymptotic convergence factor, since it plays a crucial role for certain iterative methods solving large-scale matrix problems. The factor κ ( E ) can be expressed with the help of Jacobi’s elliptic and theta functions, where this representation is very involved. In this paper, we give precise upper and lower bounds for κ ( E ) in terms of elementary functions of the endpoints of E .</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2010.06.008</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Algebra ; Algebraic geometry ; Asymptotic properties ; Convergence ; Estimated asymptotic convergence factor ; Exact sciences and technology ; Inequality ; Intervals ; Jacobian elliptic functions ; Jacobian theta functions ; Mathematical analysis ; Mathematical models ; Mathematics ; Norms ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Representations ; Sciences and techniques of general use ; Sequences, series, summability ; Two intervals ; Unions</subject><ispartof>Journal of computational and applied mathematics, 2011-08, Vol.236 (1), p.28-38</ispartof><rights>2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-38c512a302bf4685d0b5d586efb6fbe875fe3e0bd9b42592034a66266b725d383</citedby><cites>FETCH-LOGICAL-c402t-38c512a302bf4685d0b5d586efb6fbe875fe3e0bd9b42592034a66266b725d383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23929,23930,25139,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24615410$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schiefermayr, Klaus</creatorcontrib><title>Estimates for the asymptotic convergence factor of two intervals</title><title>Journal of computational and applied mathematics</title><description>Let E be the union of two real intervals not containing zero. Then L n r ( E ) denotes the supremum norm of that polynomial P n of degree less than or equal to n , which is minimal with respect to the supremum norm provided that P n ( 0 ) = 1 . It is well known that the limit κ ( E ) ≔ lim n → ∞ L n r ( E ) n exists, where κ ( E ) is called the asymptotic convergence factor, since it plays a crucial role for certain iterative methods solving large-scale matrix problems. The factor κ ( E ) can be expressed with the help of Jacobi’s elliptic and theta functions, where this representation is very involved. In this paper, we give precise upper and lower bounds for κ ( E ) in terms of elementary functions of the endpoints of E .</description><subject>Algebra</subject><subject>Algebraic geometry</subject><subject>Asymptotic properties</subject><subject>Convergence</subject><subject>Estimated asymptotic convergence factor</subject><subject>Exact sciences and technology</subject><subject>Inequality</subject><subject>Intervals</subject><subject>Jacobian elliptic functions</subject><subject>Jacobian theta functions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Norms</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Representations</subject><subject>Sciences and techniques of general use</subject><subject>Sequences, series, summability</subject><subject>Two intervals</subject><subject>Unions</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNtexNOuk-xusosXpdQPKHjRc8hmJ5rS3dQkrfTfm9Li0dPLwDMzvA8h1xQKCpTfLQuthoJBmoEXAM0JmdBGtDkVojklEyiFyKFi4pxchLAEAN7SakIe5iHaQUUMmXE-i1-YqbAb1tFFqzPtxi36Txw1ZkbpmAhnsvjjMjtG9Fu1CpfkzKTAq2NOycfT_H32ki_enl9nj4tcV8BiXja6pkyVwDpT8abuoav7uuFoOm46bERtsETo-rarWN0yKCvFOeO8E6zuy6acktvD3bV33xsMUQ42aFyt1IhuE2RL2xYEpTSR9EBq70LwaOTap4p-JynIvSy5lEmW3MuSwGWSlXZujtdV0GplvBq1DX-LrOK0rigk7v7AYaq6tehl0Havp7cedZS9s_98-QXU_X5r</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Schiefermayr, Klaus</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110801</creationdate><title>Estimates for the asymptotic convergence factor of two intervals</title><author>Schiefermayr, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-38c512a302bf4685d0b5d586efb6fbe875fe3e0bd9b42592034a66266b725d383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algebra</topic><topic>Algebraic geometry</topic><topic>Asymptotic properties</topic><topic>Convergence</topic><topic>Estimated asymptotic convergence factor</topic><topic>Exact sciences and technology</topic><topic>Inequality</topic><topic>Intervals</topic><topic>Jacobian elliptic functions</topic><topic>Jacobian theta functions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Norms</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Representations</topic><topic>Sciences and techniques of general use</topic><topic>Sequences, series, summability</topic><topic>Two intervals</topic><topic>Unions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schiefermayr, Klaus</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schiefermayr, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimates for the asymptotic convergence factor of two intervals</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2011-08-01</date><risdate>2011</risdate><volume>236</volume><issue>1</issue><spage>28</spage><epage>38</epage><pages>28-38</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>Let E be the union of two real intervals not containing zero. Then L n r ( E ) denotes the supremum norm of that polynomial P n of degree less than or equal to n , which is minimal with respect to the supremum norm provided that P n ( 0 ) = 1 . It is well known that the limit κ ( E ) ≔ lim n → ∞ L n r ( E ) n exists, where κ ( E ) is called the asymptotic convergence factor, since it plays a crucial role for certain iterative methods solving large-scale matrix problems. The factor κ ( E ) can be expressed with the help of Jacobi’s elliptic and theta functions, where this representation is very involved. In this paper, we give precise upper and lower bounds for κ ( E ) in terms of elementary functions of the endpoints of E .</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2010.06.008</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2011-08, Vol.236 (1), p.28-38
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_919907111
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Algebra
Algebraic geometry
Asymptotic properties
Convergence
Estimated asymptotic convergence factor
Exact sciences and technology
Inequality
Intervals
Jacobian elliptic functions
Jacobian theta functions
Mathematical analysis
Mathematical models
Mathematics
Norms
Numerical analysis
Numerical analysis. Scientific computation
Numerical linear algebra
Representations
Sciences and techniques of general use
Sequences, series, summability
Two intervals
Unions
title Estimates for the asymptotic convergence factor of two intervals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A25%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimates%20for%20the%20asymptotic%20convergence%20factor%20of%20two%20intervals&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Schiefermayr,%20Klaus&rft.date=2011-08-01&rft.volume=236&rft.issue=1&rft.spage=28&rft.epage=38&rft.pages=28-38&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/j.cam.2010.06.008&rft_dat=%3Cproquest_cross%3E919907111%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-38c512a302bf4685d0b5d586efb6fbe875fe3e0bd9b42592034a66266b725d383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=919907111&rft_id=info:pmid/&rfr_iscdi=true