Loading…
Structure variation of tensile-deformed amorphous poly(l-lactic acid): Effects of deformation rate and strain
The present work explored the structure-property correlations for the biopolymer poly(l-lactic acid) (PLA) by studying deformation-mediated molecular orientation and crystallization. The structural and morphological variations of amorphous PLA under different strain rates were investigated. The resu...
Saved in:
Published in: | Polymer (Guilford) 2011-08, Vol.52 (18), p.4141-4149 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The present work explored the structure-property correlations for the biopolymer poly(l-lactic acid) (PLA) by studying deformation-mediated molecular orientation and crystallization. The structural and morphological variations of amorphous PLA under different strain rates were investigated. The result showed that strain rate significantly influences its strain-hardening behavior. The crystallinity and orientation as well as cavitation of deformed PLA increase with the increase of strain rates. The structure evolution has been divided into three potential stages: (i) at small strains (160%), the increasing number of oriented chains in the amorphous regions promotes the crystallization of PLA. Our study suggests that strain rate and stretching strain play important roles on modulating the crystallization and orientation of amorphous PLA.
[Display omitted] |
---|---|
ISSN: | 0032-3861 1873-2291 |
DOI: | 10.1016/j.polymer.2011.07.003 |