Loading…

Asymptotic integration of ( 1 + α ) -order fractional differential equations

We establish the long-time asymptotic formula of solutions to the ( 1 + α ) -order fractional differential equation 0 i O t 1 + α x + a ( t ) x = 0 , t > 0 , under some simple restrictions on the functional coefficient a ( t ) , where 0 i O t 1 + α is one of the fractional differential operators...

Full description

Saved in:
Bibliographic Details
Published in:Computers & mathematics with applications (1987) 2011-08, Vol.62 (3), p.1492-1500
Main Authors: Băleanu, Dumitru, Mustafa, Octavian G., Agarwal, Ravi P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c335t-39867e4a5eb6bc217855f034e783e448a5a4a047f1a340c17ae22004b52ea8313
cites cdi_FETCH-LOGICAL-c335t-39867e4a5eb6bc217855f034e783e448a5a4a047f1a340c17ae22004b52ea8313
container_end_page 1500
container_issue 3
container_start_page 1492
container_title Computers & mathematics with applications (1987)
container_volume 62
creator Băleanu, Dumitru
Mustafa, Octavian G.
Agarwal, Ravi P.
description We establish the long-time asymptotic formula of solutions to the ( 1 + α ) -order fractional differential equation 0 i O t 1 + α x + a ( t ) x = 0 , t > 0 , under some simple restrictions on the functional coefficient a ( t ) , where 0 i O t 1 + α is one of the fractional differential operators 0 D t α ( x ′ ) , ( 0 D t α x ) ′ = 0 D t 1 + α x and 0 D t α ( t x ′ − x ) . Here, 0 D t α designates the Riemann–Liouville derivative of order α ∈ ( 0 , 1 ) . The asymptotic formula reads as [ b + O ( 1 ) ] ⋅ x s m a l l + c ⋅ x l a r g e as t → + ∞ for given b , c ∈ R , where x s m a l l and x l a r g e represent the eventually small and eventually large solutions that generate the solution space of the fractional differential equation 0 i O t 1 + α x = 0 , t > 0 .
doi_str_mv 10.1016/j.camwa.2011.03.021
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919908760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122111001738</els_id><sourcerecordid>919908760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-39867e4a5eb6bc217855f034e783e448a5a4a047f1a340c17ae22004b52ea8313</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhi0EEqVwAjbeAUIJ40diZ8ECVbykIjawtlxnglylSWu7oB6Li3Am0pY1q9Fo_m808xFyziBnwMqbee7s4svmHBjLQeTA2QEZMa1EpspSH5IR6EpnjHN2TE5inAOAFBxG5OUubhbL1CfvqO8SfgSbfN_RvqGXlNFr-vNNr2jWhxoDbYJ126ltae2bBgN2yQ8NrtY7Kp6So8a2Ec_-6pi8P9y_TZ6y6evj8-RumjkhipSJSpcKpS1wVs4cZ0oXRQNCotICpdS2sNKCVA2zQoJjyiLnw8WzgqPVgokxudjvXYZ-tcaYzMJHh21rO-zX0VSsqkCrEoak2Cdd6GMM2Jhl8AsbNoaB2bozc7NzZ7buDAgzuBuo2z2FwxOfHoOJzmPnsPYBXTJ17__lfwGdg3eY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919908760</pqid></control><display><type>article</type><title>Asymptotic integration of ( 1 + α ) -order fractional differential equations</title><source>Elsevier</source><creator>Băleanu, Dumitru ; Mustafa, Octavian G. ; Agarwal, Ravi P.</creator><creatorcontrib>Băleanu, Dumitru ; Mustafa, Octavian G. ; Agarwal, Ravi P.</creatorcontrib><description>We establish the long-time asymptotic formula of solutions to the ( 1 + α ) -order fractional differential equation 0 i O t 1 + α x + a ( t ) x = 0 , t &gt; 0 , under some simple restrictions on the functional coefficient a ( t ) , where 0 i O t 1 + α is one of the fractional differential operators 0 D t α ( x ′ ) , ( 0 D t α x ) ′ = 0 D t 1 + α x and 0 D t α ( t x ′ − x ) . Here, 0 D t α designates the Riemann–Liouville derivative of order α ∈ ( 0 , 1 ) . The asymptotic formula reads as [ b + O ( 1 ) ] ⋅ x s m a l l + c ⋅ x l a r g e as t → + ∞ for given b , c ∈ R , where x s m a l l and x l a r g e represent the eventually small and eventually large solutions that generate the solution space of the fractional differential equation 0 i O t 1 + α x = 0 , t &gt; 0 .</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2011.03.021</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Asymptotic integration ; Asymptotic properties ; Constrictions ; Derivatives ; Differential equations ; Linear fractional differential equation ; Mathematical analysis ; Mathematical models ; Operators ; Solution space</subject><ispartof>Computers &amp; mathematics with applications (1987), 2011-08, Vol.62 (3), p.1492-1500</ispartof><rights>2011 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-39867e4a5eb6bc217855f034e783e448a5a4a047f1a340c17ae22004b52ea8313</citedby><cites>FETCH-LOGICAL-c335t-39867e4a5eb6bc217855f034e783e448a5a4a047f1a340c17ae22004b52ea8313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Băleanu, Dumitru</creatorcontrib><creatorcontrib>Mustafa, Octavian G.</creatorcontrib><creatorcontrib>Agarwal, Ravi P.</creatorcontrib><title>Asymptotic integration of ( 1 + α ) -order fractional differential equations</title><title>Computers &amp; mathematics with applications (1987)</title><description>We establish the long-time asymptotic formula of solutions to the ( 1 + α ) -order fractional differential equation 0 i O t 1 + α x + a ( t ) x = 0 , t &gt; 0 , under some simple restrictions on the functional coefficient a ( t ) , where 0 i O t 1 + α is one of the fractional differential operators 0 D t α ( x ′ ) , ( 0 D t α x ) ′ = 0 D t 1 + α x and 0 D t α ( t x ′ − x ) . Here, 0 D t α designates the Riemann–Liouville derivative of order α ∈ ( 0 , 1 ) . The asymptotic formula reads as [ b + O ( 1 ) ] ⋅ x s m a l l + c ⋅ x l a r g e as t → + ∞ for given b , c ∈ R , where x s m a l l and x l a r g e represent the eventually small and eventually large solutions that generate the solution space of the fractional differential equation 0 i O t 1 + α x = 0 , t &gt; 0 .</description><subject>Asymptotic integration</subject><subject>Asymptotic properties</subject><subject>Constrictions</subject><subject>Derivatives</subject><subject>Differential equations</subject><subject>Linear fractional differential equation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Operators</subject><subject>Solution space</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOwzAQhi0EEqVwAjbeAUIJ40diZ8ECVbykIjawtlxnglylSWu7oB6Li3Am0pY1q9Fo_m808xFyziBnwMqbee7s4svmHBjLQeTA2QEZMa1EpspSH5IR6EpnjHN2TE5inAOAFBxG5OUubhbL1CfvqO8SfgSbfN_RvqGXlNFr-vNNr2jWhxoDbYJ126ltae2bBgN2yQ8NrtY7Kp6So8a2Ec_-6pi8P9y_TZ6y6evj8-RumjkhipSJSpcKpS1wVs4cZ0oXRQNCotICpdS2sNKCVA2zQoJjyiLnw8WzgqPVgokxudjvXYZ-tcaYzMJHh21rO-zX0VSsqkCrEoak2Cdd6GMM2Jhl8AsbNoaB2bozc7NzZ7buDAgzuBuo2z2FwxOfHoOJzmPnsPYBXTJ17__lfwGdg3eY</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Băleanu, Dumitru</creator><creator>Mustafa, Octavian G.</creator><creator>Agarwal, Ravi P.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110801</creationdate><title>Asymptotic integration of ( 1 + α ) -order fractional differential equations</title><author>Băleanu, Dumitru ; Mustafa, Octavian G. ; Agarwal, Ravi P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-39867e4a5eb6bc217855f034e783e448a5a4a047f1a340c17ae22004b52ea8313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Asymptotic integration</topic><topic>Asymptotic properties</topic><topic>Constrictions</topic><topic>Derivatives</topic><topic>Differential equations</topic><topic>Linear fractional differential equation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Operators</topic><topic>Solution space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Băleanu, Dumitru</creatorcontrib><creatorcontrib>Mustafa, Octavian G.</creatorcontrib><creatorcontrib>Agarwal, Ravi P.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Băleanu, Dumitru</au><au>Mustafa, Octavian G.</au><au>Agarwal, Ravi P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic integration of ( 1 + α ) -order fractional differential equations</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2011-08-01</date><risdate>2011</risdate><volume>62</volume><issue>3</issue><spage>1492</spage><epage>1500</epage><pages>1492-1500</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>We establish the long-time asymptotic formula of solutions to the ( 1 + α ) -order fractional differential equation 0 i O t 1 + α x + a ( t ) x = 0 , t &gt; 0 , under some simple restrictions on the functional coefficient a ( t ) , where 0 i O t 1 + α is one of the fractional differential operators 0 D t α ( x ′ ) , ( 0 D t α x ) ′ = 0 D t 1 + α x and 0 D t α ( t x ′ − x ) . Here, 0 D t α designates the Riemann–Liouville derivative of order α ∈ ( 0 , 1 ) . The asymptotic formula reads as [ b + O ( 1 ) ] ⋅ x s m a l l + c ⋅ x l a r g e as t → + ∞ for given b , c ∈ R , where x s m a l l and x l a r g e represent the eventually small and eventually large solutions that generate the solution space of the fractional differential equation 0 i O t 1 + α x = 0 , t &gt; 0 .</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2011.03.021</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2011-08, Vol.62 (3), p.1492-1500
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_miscellaneous_919908760
source Elsevier
subjects Asymptotic integration
Asymptotic properties
Constrictions
Derivatives
Differential equations
Linear fractional differential equation
Mathematical analysis
Mathematical models
Operators
Solution space
title Asymptotic integration of ( 1 + α ) -order fractional differential equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A27%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20integration%20of%20(%201%20+%20%CE%B1%20)%20-order%20fractional%20differential%20equations&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=B%C4%83leanu,%20Dumitru&rft.date=2011-08-01&rft.volume=62&rft.issue=3&rft.spage=1492&rft.epage=1500&rft.pages=1492-1500&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2011.03.021&rft_dat=%3Cproquest_cross%3E919908760%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-39867e4a5eb6bc217855f034e783e448a5a4a047f1a340c17ae22004b52ea8313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=919908760&rft_id=info:pmid/&rfr_iscdi=true