Loading…
Technology of InP-based 1.55-μm ultrafast OEMMIC's : 40-Gbit/s broad-band and 38/60-GHz narrow-band photoreceivers
For future long-haul communication systems operating at bitrates of 40 Gbit/s and for broad-band mobile access systems using 38- or 60-GHz carrier frequencies, ultrafast photoreceivers have to be provided. Therefore, an integration concept for InP-based optoelectronic microwave monolithic integrated...
Saved in:
Published in: | IEEE journal of quantum electronics 1999-07, Vol.35 (7), p.1024-1031 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For future long-haul communication systems operating at bitrates of 40 Gbit/s and for broad-band mobile access systems using 38- or 60-GHz carrier frequencies, ultrafast photoreceivers have to be provided. Therefore, an integration concept for InP-based optoelectronic microwave monolithic integrated circuits for the 1.55- mu m wavelength regime is demonstrated, which allows independent optimization of the constituting devices. Two different types of photodetectors (PDs), a waveguide-integrated PIN photodiode (PD) and a top-illuminated metal-semiconductor-metal PD, both having bandwidths of up to 70 GHz, have been developed. These are fabricated together with different amplifier designs employing high electron mobility transistors which exhibit transit frequencies of up to 90 GHz. The application to a 40-Gbit/s broadband photoreceiver for high-bit-rate time-division multiplexing systems is reported, as well as the application to 38- and 60-GHz narrow-band photoreceivers for use as optic/millimeterwave converters in mobile communication systems |
---|---|
ISSN: | 0018-9197 1558-1713 |
DOI: | 10.1109/3.772171 |