Loading…

Thermophysical continuous profiles and their discretization

Most of the time the surface of materials presents profiles of physical properties that are variable along the depth. The heat diffusion equation of current thermophysical profiles rarely accepts analytical solutions that can be introduced in a rapid minimization scheme. A thermal Riccati equation i...

Full description

Saved in:
Bibliographic Details
Published in:International journal of thermal sciences 2011-11, Vol.50 (11), p.2078-2083
Main Authors: Grossel, Ph, Depasse, F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c386t-3c363a4be29d0e64ef2f11dae8395b8b5a6feb18bd61b9045da6be0c6450962b3
cites cdi_FETCH-LOGICAL-c386t-3c363a4be29d0e64ef2f11dae8395b8b5a6feb18bd61b9045da6be0c6450962b3
container_end_page 2083
container_issue 11
container_start_page 2078
container_title International journal of thermal sciences
container_volume 50
creator Grossel, Ph
Depasse, F.
description Most of the time the surface of materials presents profiles of physical properties that are variable along the depth. The heat diffusion equation of current thermophysical profiles rarely accepts analytical solutions that can be introduced in a rapid minimization scheme. A thermal Riccati equation is defined in case of any continuous profiles, the solutions of which are shown to be the limit of the exact solutions for simple staircase multilayer modellings when the layers are taken thinner and thinner. Thanks to the use of iterative methods based on the thermal wave or the quadrupole descriptions, it is shown that the choice of the multilayer approach to describe continuous depth profiles of materials leads to exact solutions of the problem. ► The Riccati and the heat equations for thermophysical continuous profiles. ► Solutions of the Riccati equation reveals an iterative structure within depth. ► A numerous thin multilayer can be used with great confidence for the continuous case.
doi_str_mv 10.1016/j.ijthermalsci.2011.03.031
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919914164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1290072911001864</els_id><sourcerecordid>919914164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-3c363a4be29d0e64ef2f11dae8395b8b5a6feb18bd61b9045da6be0c6450962b3</originalsourceid><addsrcrecordid>eNqNUEtLw0AQXkTBWv0PQRBPiTN5bLN6kvqEgpd6XvYxoRvSpO6mgv56t7SIR2Fg5vDN92LsEiFDQH7TZq4dV-TXqgvGZTkgZlDEwSM2wdmsTkvk_DjeuYAUZrk4ZWchtAAwEyAm7G65-x42q6_gjOoSM_Sj67fDNiQbPzSuo5Co3iZRxPnEumA8je5bjW7oz9lJE3Xp4rCn7P3pcTl_SRdvz6_z-0VqipqPaWEKXqhSUy4sEC-pyRtEq6guRKVrXSnekMZaW45aQFlZxTWB4WUFgue6mLLrPW909LGlMMp19EFdp3qKRqVAITDmLCPydo80fgjBUyM33q2V_5IIcleYbOXfwuSuMAlFHIzPVwcZFWIVjVe9ceGXIS8rrGrII-5hj6OY-dORl5GJekPWeTKjtIP7j9wP5k6Jkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919914164</pqid></control><display><type>article</type><title>Thermophysical continuous profiles and their discretization</title><source>ScienceDirect Journals</source><creator>Grossel, Ph ; Depasse, F.</creator><creatorcontrib>Grossel, Ph ; Depasse, F.</creatorcontrib><description>Most of the time the surface of materials presents profiles of physical properties that are variable along the depth. The heat diffusion equation of current thermophysical profiles rarely accepts analytical solutions that can be introduced in a rapid minimization scheme. A thermal Riccati equation is defined in case of any continuous profiles, the solutions of which are shown to be the limit of the exact solutions for simple staircase multilayer modellings when the layers are taken thinner and thinner. Thanks to the use of iterative methods based on the thermal wave or the quadrupole descriptions, it is shown that the choice of the multilayer approach to describe continuous depth profiles of materials leads to exact solutions of the problem. ► The Riccati and the heat equations for thermophysical continuous profiles. ► Solutions of the Riccati equation reveals an iterative structure within depth. ► A numerous thin multilayer can be used with great confidence for the continuous case.</description><identifier>ISSN: 1290-0729</identifier><identifier>EISSN: 1778-4166</identifier><identifier>DOI: 10.1016/j.ijthermalsci.2011.03.031</identifier><language>eng</language><publisher>Kidlington: Elsevier Masson SAS</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Continuous profiles ; Discretization ; Exact sciences and technology ; Exact solutions ; Iterative methods ; Mathematical analysis ; Mathematical models ; Multilayers ; Nonelectronic thermal conduction and heat-pulse propagation in solids; thermal waves ; Physics ; Riccati equation ; Solvents ; Thermal quadrupoles ; Thermal waves ; Thermophysical ; Transport properties of condensed matter (nonelectronic)</subject><ispartof>International journal of thermal sciences, 2011-11, Vol.50 (11), p.2078-2083</ispartof><rights>2011 Elsevier Masson SAS</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-3c363a4be29d0e64ef2f11dae8395b8b5a6feb18bd61b9045da6be0c6450962b3</citedby><cites>FETCH-LOGICAL-c386t-3c363a4be29d0e64ef2f11dae8395b8b5a6feb18bd61b9045da6be0c6450962b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24515802$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Grossel, Ph</creatorcontrib><creatorcontrib>Depasse, F.</creatorcontrib><title>Thermophysical continuous profiles and their discretization</title><title>International journal of thermal sciences</title><description>Most of the time the surface of materials presents profiles of physical properties that are variable along the depth. The heat diffusion equation of current thermophysical profiles rarely accepts analytical solutions that can be introduced in a rapid minimization scheme. A thermal Riccati equation is defined in case of any continuous profiles, the solutions of which are shown to be the limit of the exact solutions for simple staircase multilayer modellings when the layers are taken thinner and thinner. Thanks to the use of iterative methods based on the thermal wave or the quadrupole descriptions, it is shown that the choice of the multilayer approach to describe continuous depth profiles of materials leads to exact solutions of the problem. ► The Riccati and the heat equations for thermophysical continuous profiles. ► Solutions of the Riccati equation reveals an iterative structure within depth. ► A numerous thin multilayer can be used with great confidence for the continuous case.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Continuous profiles</subject><subject>Discretization</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Multilayers</subject><subject>Nonelectronic thermal conduction and heat-pulse propagation in solids; thermal waves</subject><subject>Physics</subject><subject>Riccati equation</subject><subject>Solvents</subject><subject>Thermal quadrupoles</subject><subject>Thermal waves</subject><subject>Thermophysical</subject><subject>Transport properties of condensed matter (nonelectronic)</subject><issn>1290-0729</issn><issn>1778-4166</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNUEtLw0AQXkTBWv0PQRBPiTN5bLN6kvqEgpd6XvYxoRvSpO6mgv56t7SIR2Fg5vDN92LsEiFDQH7TZq4dV-TXqgvGZTkgZlDEwSM2wdmsTkvk_DjeuYAUZrk4ZWchtAAwEyAm7G65-x42q6_gjOoSM_Sj67fDNiQbPzSuo5Co3iZRxPnEumA8je5bjW7oz9lJE3Xp4rCn7P3pcTl_SRdvz6_z-0VqipqPaWEKXqhSUy4sEC-pyRtEq6guRKVrXSnekMZaW45aQFlZxTWB4WUFgue6mLLrPW909LGlMMp19EFdp3qKRqVAITDmLCPydo80fgjBUyM33q2V_5IIcleYbOXfwuSuMAlFHIzPVwcZFWIVjVe9ceGXIS8rrGrII-5hj6OY-dORl5GJekPWeTKjtIP7j9wP5k6Jkg</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Grossel, Ph</creator><creator>Depasse, F.</creator><general>Elsevier Masson SAS</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20111101</creationdate><title>Thermophysical continuous profiles and their discretization</title><author>Grossel, Ph ; Depasse, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-3c363a4be29d0e64ef2f11dae8395b8b5a6feb18bd61b9045da6be0c6450962b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Continuous profiles</topic><topic>Discretization</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Multilayers</topic><topic>Nonelectronic thermal conduction and heat-pulse propagation in solids; thermal waves</topic><topic>Physics</topic><topic>Riccati equation</topic><topic>Solvents</topic><topic>Thermal quadrupoles</topic><topic>Thermal waves</topic><topic>Thermophysical</topic><topic>Transport properties of condensed matter (nonelectronic)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grossel, Ph</creatorcontrib><creatorcontrib>Depasse, F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of thermal sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grossel, Ph</au><au>Depasse, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermophysical continuous profiles and their discretization</atitle><jtitle>International journal of thermal sciences</jtitle><date>2011-11-01</date><risdate>2011</risdate><volume>50</volume><issue>11</issue><spage>2078</spage><epage>2083</epage><pages>2078-2083</pages><issn>1290-0729</issn><eissn>1778-4166</eissn><abstract>Most of the time the surface of materials presents profiles of physical properties that are variable along the depth. The heat diffusion equation of current thermophysical profiles rarely accepts analytical solutions that can be introduced in a rapid minimization scheme. A thermal Riccati equation is defined in case of any continuous profiles, the solutions of which are shown to be the limit of the exact solutions for simple staircase multilayer modellings when the layers are taken thinner and thinner. Thanks to the use of iterative methods based on the thermal wave or the quadrupole descriptions, it is shown that the choice of the multilayer approach to describe continuous depth profiles of materials leads to exact solutions of the problem. ► The Riccati and the heat equations for thermophysical continuous profiles. ► Solutions of the Riccati equation reveals an iterative structure within depth. ► A numerous thin multilayer can be used with great confidence for the continuous case.</abstract><cop>Kidlington</cop><pub>Elsevier Masson SAS</pub><doi>10.1016/j.ijthermalsci.2011.03.031</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1290-0729
ispartof International journal of thermal sciences, 2011-11, Vol.50 (11), p.2078-2083
issn 1290-0729
1778-4166
language eng
recordid cdi_proquest_miscellaneous_919914164
source ScienceDirect Journals
subjects Condensed matter: structure, mechanical and thermal properties
Continuous profiles
Discretization
Exact sciences and technology
Exact solutions
Iterative methods
Mathematical analysis
Mathematical models
Multilayers
Nonelectronic thermal conduction and heat-pulse propagation in solids
thermal waves
Physics
Riccati equation
Solvents
Thermal quadrupoles
Thermal waves
Thermophysical
Transport properties of condensed matter (nonelectronic)
title Thermophysical continuous profiles and their discretization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermophysical%20continuous%20profiles%20and%20their%20discretization&rft.jtitle=International%20journal%20of%20thermal%20sciences&rft.au=Grossel,%20Ph&rft.date=2011-11-01&rft.volume=50&rft.issue=11&rft.spage=2078&rft.epage=2083&rft.pages=2078-2083&rft.issn=1290-0729&rft.eissn=1778-4166&rft_id=info:doi/10.1016/j.ijthermalsci.2011.03.031&rft_dat=%3Cproquest_cross%3E919914164%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-3c363a4be29d0e64ef2f11dae8395b8b5a6feb18bd61b9045da6be0c6450962b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=919914164&rft_id=info:pmid/&rfr_iscdi=true