Loading…
Thermophysical continuous profiles and their discretization
Most of the time the surface of materials presents profiles of physical properties that are variable along the depth. The heat diffusion equation of current thermophysical profiles rarely accepts analytical solutions that can be introduced in a rapid minimization scheme. A thermal Riccati equation i...
Saved in:
Published in: | International journal of thermal sciences 2011-11, Vol.50 (11), p.2078-2083 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c386t-3c363a4be29d0e64ef2f11dae8395b8b5a6feb18bd61b9045da6be0c6450962b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c386t-3c363a4be29d0e64ef2f11dae8395b8b5a6feb18bd61b9045da6be0c6450962b3 |
container_end_page | 2083 |
container_issue | 11 |
container_start_page | 2078 |
container_title | International journal of thermal sciences |
container_volume | 50 |
creator | Grossel, Ph Depasse, F. |
description | Most of the time the surface of materials presents profiles of physical properties that are variable along the depth. The heat diffusion equation of current thermophysical profiles rarely accepts analytical solutions that can be introduced in a rapid minimization scheme. A thermal Riccati equation is defined in case of any continuous profiles, the solutions of which are shown to be the limit of the exact solutions for simple staircase multilayer modellings when the layers are taken thinner and thinner. Thanks to the use of iterative methods based on the thermal wave or the quadrupole descriptions, it is shown that the choice of the multilayer approach to describe continuous depth profiles of materials leads to exact solutions of the problem.
► The Riccati and the heat equations for thermophysical continuous profiles. ► Solutions of the Riccati equation reveals an iterative structure within depth. ► A numerous thin multilayer can be used with great confidence for the continuous case. |
doi_str_mv | 10.1016/j.ijthermalsci.2011.03.031 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919914164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1290072911001864</els_id><sourcerecordid>919914164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-3c363a4be29d0e64ef2f11dae8395b8b5a6feb18bd61b9045da6be0c6450962b3</originalsourceid><addsrcrecordid>eNqNUEtLw0AQXkTBWv0PQRBPiTN5bLN6kvqEgpd6XvYxoRvSpO6mgv56t7SIR2Fg5vDN92LsEiFDQH7TZq4dV-TXqgvGZTkgZlDEwSM2wdmsTkvk_DjeuYAUZrk4ZWchtAAwEyAm7G65-x42q6_gjOoSM_Sj67fDNiQbPzSuo5Co3iZRxPnEumA8je5bjW7oz9lJE3Xp4rCn7P3pcTl_SRdvz6_z-0VqipqPaWEKXqhSUy4sEC-pyRtEq6guRKVrXSnekMZaW45aQFlZxTWB4WUFgue6mLLrPW909LGlMMp19EFdp3qKRqVAITDmLCPydo80fgjBUyM33q2V_5IIcleYbOXfwuSuMAlFHIzPVwcZFWIVjVe9ceGXIS8rrGrII-5hj6OY-dORl5GJekPWeTKjtIP7j9wP5k6Jkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919914164</pqid></control><display><type>article</type><title>Thermophysical continuous profiles and their discretization</title><source>ScienceDirect Journals</source><creator>Grossel, Ph ; Depasse, F.</creator><creatorcontrib>Grossel, Ph ; Depasse, F.</creatorcontrib><description>Most of the time the surface of materials presents profiles of physical properties that are variable along the depth. The heat diffusion equation of current thermophysical profiles rarely accepts analytical solutions that can be introduced in a rapid minimization scheme. A thermal Riccati equation is defined in case of any continuous profiles, the solutions of which are shown to be the limit of the exact solutions for simple staircase multilayer modellings when the layers are taken thinner and thinner. Thanks to the use of iterative methods based on the thermal wave or the quadrupole descriptions, it is shown that the choice of the multilayer approach to describe continuous depth profiles of materials leads to exact solutions of the problem.
► The Riccati and the heat equations for thermophysical continuous profiles. ► Solutions of the Riccati equation reveals an iterative structure within depth. ► A numerous thin multilayer can be used with great confidence for the continuous case.</description><identifier>ISSN: 1290-0729</identifier><identifier>EISSN: 1778-4166</identifier><identifier>DOI: 10.1016/j.ijthermalsci.2011.03.031</identifier><language>eng</language><publisher>Kidlington: Elsevier Masson SAS</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Continuous profiles ; Discretization ; Exact sciences and technology ; Exact solutions ; Iterative methods ; Mathematical analysis ; Mathematical models ; Multilayers ; Nonelectronic thermal conduction and heat-pulse propagation in solids; thermal waves ; Physics ; Riccati equation ; Solvents ; Thermal quadrupoles ; Thermal waves ; Thermophysical ; Transport properties of condensed matter (nonelectronic)</subject><ispartof>International journal of thermal sciences, 2011-11, Vol.50 (11), p.2078-2083</ispartof><rights>2011 Elsevier Masson SAS</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-3c363a4be29d0e64ef2f11dae8395b8b5a6feb18bd61b9045da6be0c6450962b3</citedby><cites>FETCH-LOGICAL-c386t-3c363a4be29d0e64ef2f11dae8395b8b5a6feb18bd61b9045da6be0c6450962b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24515802$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Grossel, Ph</creatorcontrib><creatorcontrib>Depasse, F.</creatorcontrib><title>Thermophysical continuous profiles and their discretization</title><title>International journal of thermal sciences</title><description>Most of the time the surface of materials presents profiles of physical properties that are variable along the depth. The heat diffusion equation of current thermophysical profiles rarely accepts analytical solutions that can be introduced in a rapid minimization scheme. A thermal Riccati equation is defined in case of any continuous profiles, the solutions of which are shown to be the limit of the exact solutions for simple staircase multilayer modellings when the layers are taken thinner and thinner. Thanks to the use of iterative methods based on the thermal wave or the quadrupole descriptions, it is shown that the choice of the multilayer approach to describe continuous depth profiles of materials leads to exact solutions of the problem.
► The Riccati and the heat equations for thermophysical continuous profiles. ► Solutions of the Riccati equation reveals an iterative structure within depth. ► A numerous thin multilayer can be used with great confidence for the continuous case.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Continuous profiles</subject><subject>Discretization</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Multilayers</subject><subject>Nonelectronic thermal conduction and heat-pulse propagation in solids; thermal waves</subject><subject>Physics</subject><subject>Riccati equation</subject><subject>Solvents</subject><subject>Thermal quadrupoles</subject><subject>Thermal waves</subject><subject>Thermophysical</subject><subject>Transport properties of condensed matter (nonelectronic)</subject><issn>1290-0729</issn><issn>1778-4166</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNUEtLw0AQXkTBWv0PQRBPiTN5bLN6kvqEgpd6XvYxoRvSpO6mgv56t7SIR2Fg5vDN92LsEiFDQH7TZq4dV-TXqgvGZTkgZlDEwSM2wdmsTkvk_DjeuYAUZrk4ZWchtAAwEyAm7G65-x42q6_gjOoSM_Sj67fDNiQbPzSuo5Co3iZRxPnEumA8je5bjW7oz9lJE3Xp4rCn7P3pcTl_SRdvz6_z-0VqipqPaWEKXqhSUy4sEC-pyRtEq6guRKVrXSnekMZaW45aQFlZxTWB4WUFgue6mLLrPW909LGlMMp19EFdp3qKRqVAITDmLCPydo80fgjBUyM33q2V_5IIcleYbOXfwuSuMAlFHIzPVwcZFWIVjVe9ceGXIS8rrGrII-5hj6OY-dORl5GJekPWeTKjtIP7j9wP5k6Jkg</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Grossel, Ph</creator><creator>Depasse, F.</creator><general>Elsevier Masson SAS</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20111101</creationdate><title>Thermophysical continuous profiles and their discretization</title><author>Grossel, Ph ; Depasse, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-3c363a4be29d0e64ef2f11dae8395b8b5a6feb18bd61b9045da6be0c6450962b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Continuous profiles</topic><topic>Discretization</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Multilayers</topic><topic>Nonelectronic thermal conduction and heat-pulse propagation in solids; thermal waves</topic><topic>Physics</topic><topic>Riccati equation</topic><topic>Solvents</topic><topic>Thermal quadrupoles</topic><topic>Thermal waves</topic><topic>Thermophysical</topic><topic>Transport properties of condensed matter (nonelectronic)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grossel, Ph</creatorcontrib><creatorcontrib>Depasse, F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of thermal sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grossel, Ph</au><au>Depasse, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermophysical continuous profiles and their discretization</atitle><jtitle>International journal of thermal sciences</jtitle><date>2011-11-01</date><risdate>2011</risdate><volume>50</volume><issue>11</issue><spage>2078</spage><epage>2083</epage><pages>2078-2083</pages><issn>1290-0729</issn><eissn>1778-4166</eissn><abstract>Most of the time the surface of materials presents profiles of physical properties that are variable along the depth. The heat diffusion equation of current thermophysical profiles rarely accepts analytical solutions that can be introduced in a rapid minimization scheme. A thermal Riccati equation is defined in case of any continuous profiles, the solutions of which are shown to be the limit of the exact solutions for simple staircase multilayer modellings when the layers are taken thinner and thinner. Thanks to the use of iterative methods based on the thermal wave or the quadrupole descriptions, it is shown that the choice of the multilayer approach to describe continuous depth profiles of materials leads to exact solutions of the problem.
► The Riccati and the heat equations for thermophysical continuous profiles. ► Solutions of the Riccati equation reveals an iterative structure within depth. ► A numerous thin multilayer can be used with great confidence for the continuous case.</abstract><cop>Kidlington</cop><pub>Elsevier Masson SAS</pub><doi>10.1016/j.ijthermalsci.2011.03.031</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1290-0729 |
ispartof | International journal of thermal sciences, 2011-11, Vol.50 (11), p.2078-2083 |
issn | 1290-0729 1778-4166 |
language | eng |
recordid | cdi_proquest_miscellaneous_919914164 |
source | ScienceDirect Journals |
subjects | Condensed matter: structure, mechanical and thermal properties Continuous profiles Discretization Exact sciences and technology Exact solutions Iterative methods Mathematical analysis Mathematical models Multilayers Nonelectronic thermal conduction and heat-pulse propagation in solids thermal waves Physics Riccati equation Solvents Thermal quadrupoles Thermal waves Thermophysical Transport properties of condensed matter (nonelectronic) |
title | Thermophysical continuous profiles and their discretization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermophysical%20continuous%20profiles%20and%20their%20discretization&rft.jtitle=International%20journal%20of%20thermal%20sciences&rft.au=Grossel,%20Ph&rft.date=2011-11-01&rft.volume=50&rft.issue=11&rft.spage=2078&rft.epage=2083&rft.pages=2078-2083&rft.issn=1290-0729&rft.eissn=1778-4166&rft_id=info:doi/10.1016/j.ijthermalsci.2011.03.031&rft_dat=%3Cproquest_cross%3E919914164%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-3c363a4be29d0e64ef2f11dae8395b8b5a6feb18bd61b9045da6be0c6450962b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=919914164&rft_id=info:pmid/&rfr_iscdi=true |