Loading…
Measurement of collector-base junction avalanche multiplication effects in advanced UHV/CVD SiGe HBT's
This paper presents measurements of the avalanche multiplication factor (M-1) in SiGe HBTs using a new technique capable of separating the avalanche multiplication and Early effect contributions to the increase of collector current with collector-base bias, as well as allowing safe measurements at p...
Saved in:
Published in: | IEEE transactions on electron devices 1999-05, Vol.46 (5), p.1007-1015 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents measurements of the avalanche multiplication factor (M-1) in SiGe HBTs using a new technique capable of separating the avalanche multiplication and Early effect contributions to the increase of collector current with collector-base bias, as well as allowing safe measurements at practical current densities. The impact of collector doping, current density, Ge profile, and operation temperature are reported for the first time using measured and simulated results from a production quality UHV/CVD SiGe HBT technology. Limitations of the technique in the presence of significant self-heating are discussed. By turning on the secondary hole impact ionization, we revealed the difference in impact ionization between strained SiGe and Si in the presence of the "dead space" effect. Despite its smaller bandgap, the compressively strained SiGe layer shows an apparent decrease in the secondary hole impact ionization rate compared to Si. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/16.760410 |