Loading…
Laplace transform and fractional differential equations
In this paper, we give a sufficient condition to guarantee the rationality of solving constant coefficient fractional differential equations by the Laplace transform method.
Saved in:
Published in: | Applied mathematics letters 2011-12, Vol.24 (12), p.2019-2023 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c402t-f0f8b6f0333b9b366872aba35143aa6e2109f9153781e145190129c516edce003 |
---|---|
cites | cdi_FETCH-LOGICAL-c402t-f0f8b6f0333b9b366872aba35143aa6e2109f9153781e145190129c516edce003 |
container_end_page | 2023 |
container_issue | 12 |
container_start_page | 2019 |
container_title | Applied mathematics letters |
container_volume | 24 |
creator | Kexue, Li Jigen, Peng |
description | In this paper, we give a sufficient condition to guarantee the rationality of solving constant coefficient fractional differential equations by the Laplace transform method. |
doi_str_mv | 10.1016/j.aml.2011.05.035 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919920206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893965911002734</els_id><sourcerecordid>919920206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-f0f8b6f0333b9b366872aba35143aa6e2109f9153781e145190129c516edce003</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsfwFsv4mnXmWSz3eBJiv-g4EXPYZqdQMp2t022gt_elBaPnoYZ3puZ9xPiFqFEwPphXdKmKyUglqBLUPpMTLCZq0JXWp6LCTRGFabW5lJcpbQGAGVUMxHzJW07cjwbI_XJD3Ezo76d-UhuDENP3awN3nPkfgy54d2eDvN0LS48dYlvTnUqvl6ePxdvxfLj9X3xtCxcBXIsPPhmVXtQSq3MStV1M5e0IqWxUkQ1SwTjDWo1b5Cx0mgApXEaa24d5yen4v64dxuH3Z7TaDchOe466nnYJ2vQGAkS6qzEo9LFIaXI3m5j2FD8sQj2wMiubWZkD4wsaJsZZc_daTslR11O3buQ_oyyqpTWpsm6x6OOc9TvwNEmF7h33IbIbrTtEP658gsvz3qe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919920206</pqid></control><display><type>article</type><title>Laplace transform and fractional differential equations</title><source>ScienceDirect Journals</source><creator>Kexue, Li ; Jigen, Peng</creator><creatorcontrib>Kexue, Li ; Jigen, Peng</creatorcontrib><description>In this paper, we give a sufficient condition to guarantee the rationality of solving constant coefficient fractional differential equations by the Laplace transform method.</description><identifier>ISSN: 0893-9659</identifier><identifier>EISSN: 1873-5452</identifier><identifier>DOI: 10.1016/j.aml.2011.05.035</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Caputo fractional derivative ; Coefficients ; Differential equations ; Exact sciences and technology ; Fractional differential equations ; Laplace transform ; Laplace transforms ; Mathematical analysis ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Ordinary differential equations ; Partial differential equations ; Real functions ; Riemann–Liouville fractional derivative ; Sciences and techniques of general use</subject><ispartof>Applied mathematics letters, 2011-12, Vol.24 (12), p.2019-2023</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-f0f8b6f0333b9b366872aba35143aa6e2109f9153781e145190129c516edce003</citedby><cites>FETCH-LOGICAL-c402t-f0f8b6f0333b9b366872aba35143aa6e2109f9153781e145190129c516edce003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24435598$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kexue, Li</creatorcontrib><creatorcontrib>Jigen, Peng</creatorcontrib><title>Laplace transform and fractional differential equations</title><title>Applied mathematics letters</title><description>In this paper, we give a sufficient condition to guarantee the rationality of solving constant coefficient fractional differential equations by the Laplace transform method.</description><subject>Caputo fractional derivative</subject><subject>Coefficients</subject><subject>Differential equations</subject><subject>Exact sciences and technology</subject><subject>Fractional differential equations</subject><subject>Laplace transform</subject><subject>Laplace transforms</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Real functions</subject><subject>Riemann–Liouville fractional derivative</subject><subject>Sciences and techniques of general use</subject><issn>0893-9659</issn><issn>1873-5452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsfwFsv4mnXmWSz3eBJiv-g4EXPYZqdQMp2t022gt_elBaPnoYZ3puZ9xPiFqFEwPphXdKmKyUglqBLUPpMTLCZq0JXWp6LCTRGFabW5lJcpbQGAGVUMxHzJW07cjwbI_XJD3Ezo76d-UhuDENP3awN3nPkfgy54d2eDvN0LS48dYlvTnUqvl6ePxdvxfLj9X3xtCxcBXIsPPhmVXtQSq3MStV1M5e0IqWxUkQ1SwTjDWo1b5Cx0mgApXEaa24d5yen4v64dxuH3Z7TaDchOe466nnYJ2vQGAkS6qzEo9LFIaXI3m5j2FD8sQj2wMiubWZkD4wsaJsZZc_daTslR11O3buQ_oyyqpTWpsm6x6OOc9TvwNEmF7h33IbIbrTtEP658gsvz3qe</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Kexue, Li</creator><creator>Jigen, Peng</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111201</creationdate><title>Laplace transform and fractional differential equations</title><author>Kexue, Li ; Jigen, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-f0f8b6f0333b9b366872aba35143aa6e2109f9153781e145190129c516edce003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Caputo fractional derivative</topic><topic>Coefficients</topic><topic>Differential equations</topic><topic>Exact sciences and technology</topic><topic>Fractional differential equations</topic><topic>Laplace transform</topic><topic>Laplace transforms</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Real functions</topic><topic>Riemann–Liouville fractional derivative</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kexue, Li</creatorcontrib><creatorcontrib>Jigen, Peng</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kexue, Li</au><au>Jigen, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laplace transform and fractional differential equations</atitle><jtitle>Applied mathematics letters</jtitle><date>2011-12-01</date><risdate>2011</risdate><volume>24</volume><issue>12</issue><spage>2019</spage><epage>2023</epage><pages>2019-2023</pages><issn>0893-9659</issn><eissn>1873-5452</eissn><abstract>In this paper, we give a sufficient condition to guarantee the rationality of solving constant coefficient fractional differential equations by the Laplace transform method.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.aml.2011.05.035</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-9659 |
ispartof | Applied mathematics letters, 2011-12, Vol.24 (12), p.2019-2023 |
issn | 0893-9659 1873-5452 |
language | eng |
recordid | cdi_proquest_miscellaneous_919920206 |
source | ScienceDirect Journals |
subjects | Caputo fractional derivative Coefficients Differential equations Exact sciences and technology Fractional differential equations Laplace transform Laplace transforms Mathematical analysis Mathematics Numerical analysis Numerical analysis. Scientific computation Ordinary differential equations Partial differential equations Real functions Riemann–Liouville fractional derivative Sciences and techniques of general use |
title | Laplace transform and fractional differential equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A44%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laplace%20transform%20and%20fractional%20differential%20equations&rft.jtitle=Applied%20mathematics%20letters&rft.au=Kexue,%20Li&rft.date=2011-12-01&rft.volume=24&rft.issue=12&rft.spage=2019&rft.epage=2023&rft.pages=2019-2023&rft.issn=0893-9659&rft.eissn=1873-5452&rft_id=info:doi/10.1016/j.aml.2011.05.035&rft_dat=%3Cproquest_cross%3E919920206%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-f0f8b6f0333b9b366872aba35143aa6e2109f9153781e145190129c516edce003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=919920206&rft_id=info:pmid/&rfr_iscdi=true |