Loading…

Laplace transform and fractional differential equations

In this paper, we give a sufficient condition to guarantee the rationality of solving constant coefficient fractional differential equations by the Laplace transform method.

Saved in:
Bibliographic Details
Published in:Applied mathematics letters 2011-12, Vol.24 (12), p.2019-2023
Main Authors: Kexue, Li, Jigen, Peng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-f0f8b6f0333b9b366872aba35143aa6e2109f9153781e145190129c516edce003
cites cdi_FETCH-LOGICAL-c402t-f0f8b6f0333b9b366872aba35143aa6e2109f9153781e145190129c516edce003
container_end_page 2023
container_issue 12
container_start_page 2019
container_title Applied mathematics letters
container_volume 24
creator Kexue, Li
Jigen, Peng
description In this paper, we give a sufficient condition to guarantee the rationality of solving constant coefficient fractional differential equations by the Laplace transform method.
doi_str_mv 10.1016/j.aml.2011.05.035
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919920206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893965911002734</els_id><sourcerecordid>919920206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-f0f8b6f0333b9b366872aba35143aa6e2109f9153781e145190129c516edce003</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsfwFsv4mnXmWSz3eBJiv-g4EXPYZqdQMp2t022gt_elBaPnoYZ3puZ9xPiFqFEwPphXdKmKyUglqBLUPpMTLCZq0JXWp6LCTRGFabW5lJcpbQGAGVUMxHzJW07cjwbI_XJD3Ezo76d-UhuDENP3awN3nPkfgy54d2eDvN0LS48dYlvTnUqvl6ePxdvxfLj9X3xtCxcBXIsPPhmVXtQSq3MStV1M5e0IqWxUkQ1SwTjDWo1b5Cx0mgApXEaa24d5yen4v64dxuH3Z7TaDchOe466nnYJ2vQGAkS6qzEo9LFIaXI3m5j2FD8sQj2wMiubWZkD4wsaJsZZc_daTslR11O3buQ_oyyqpTWpsm6x6OOc9TvwNEmF7h33IbIbrTtEP658gsvz3qe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919920206</pqid></control><display><type>article</type><title>Laplace transform and fractional differential equations</title><source>ScienceDirect Journals</source><creator>Kexue, Li ; Jigen, Peng</creator><creatorcontrib>Kexue, Li ; Jigen, Peng</creatorcontrib><description>In this paper, we give a sufficient condition to guarantee the rationality of solving constant coefficient fractional differential equations by the Laplace transform method.</description><identifier>ISSN: 0893-9659</identifier><identifier>EISSN: 1873-5452</identifier><identifier>DOI: 10.1016/j.aml.2011.05.035</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Caputo fractional derivative ; Coefficients ; Differential equations ; Exact sciences and technology ; Fractional differential equations ; Laplace transform ; Laplace transforms ; Mathematical analysis ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Ordinary differential equations ; Partial differential equations ; Real functions ; Riemann–Liouville fractional derivative ; Sciences and techniques of general use</subject><ispartof>Applied mathematics letters, 2011-12, Vol.24 (12), p.2019-2023</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-f0f8b6f0333b9b366872aba35143aa6e2109f9153781e145190129c516edce003</citedby><cites>FETCH-LOGICAL-c402t-f0f8b6f0333b9b366872aba35143aa6e2109f9153781e145190129c516edce003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24435598$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kexue, Li</creatorcontrib><creatorcontrib>Jigen, Peng</creatorcontrib><title>Laplace transform and fractional differential equations</title><title>Applied mathematics letters</title><description>In this paper, we give a sufficient condition to guarantee the rationality of solving constant coefficient fractional differential equations by the Laplace transform method.</description><subject>Caputo fractional derivative</subject><subject>Coefficients</subject><subject>Differential equations</subject><subject>Exact sciences and technology</subject><subject>Fractional differential equations</subject><subject>Laplace transform</subject><subject>Laplace transforms</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Real functions</subject><subject>Riemann–Liouville fractional derivative</subject><subject>Sciences and techniques of general use</subject><issn>0893-9659</issn><issn>1873-5452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsfwFsv4mnXmWSz3eBJiv-g4EXPYZqdQMp2t022gt_elBaPnoYZ3puZ9xPiFqFEwPphXdKmKyUglqBLUPpMTLCZq0JXWp6LCTRGFabW5lJcpbQGAGVUMxHzJW07cjwbI_XJD3Ezo76d-UhuDENP3awN3nPkfgy54d2eDvN0LS48dYlvTnUqvl6ePxdvxfLj9X3xtCxcBXIsPPhmVXtQSq3MStV1M5e0IqWxUkQ1SwTjDWo1b5Cx0mgApXEaa24d5yen4v64dxuH3Z7TaDchOe466nnYJ2vQGAkS6qzEo9LFIaXI3m5j2FD8sQj2wMiubWZkD4wsaJsZZc_daTslR11O3buQ_oyyqpTWpsm6x6OOc9TvwNEmF7h33IbIbrTtEP658gsvz3qe</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Kexue, Li</creator><creator>Jigen, Peng</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111201</creationdate><title>Laplace transform and fractional differential equations</title><author>Kexue, Li ; Jigen, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-f0f8b6f0333b9b366872aba35143aa6e2109f9153781e145190129c516edce003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Caputo fractional derivative</topic><topic>Coefficients</topic><topic>Differential equations</topic><topic>Exact sciences and technology</topic><topic>Fractional differential equations</topic><topic>Laplace transform</topic><topic>Laplace transforms</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Real functions</topic><topic>Riemann–Liouville fractional derivative</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kexue, Li</creatorcontrib><creatorcontrib>Jigen, Peng</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kexue, Li</au><au>Jigen, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laplace transform and fractional differential equations</atitle><jtitle>Applied mathematics letters</jtitle><date>2011-12-01</date><risdate>2011</risdate><volume>24</volume><issue>12</issue><spage>2019</spage><epage>2023</epage><pages>2019-2023</pages><issn>0893-9659</issn><eissn>1873-5452</eissn><abstract>In this paper, we give a sufficient condition to guarantee the rationality of solving constant coefficient fractional differential equations by the Laplace transform method.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.aml.2011.05.035</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0893-9659
ispartof Applied mathematics letters, 2011-12, Vol.24 (12), p.2019-2023
issn 0893-9659
1873-5452
language eng
recordid cdi_proquest_miscellaneous_919920206
source ScienceDirect Journals
subjects Caputo fractional derivative
Coefficients
Differential equations
Exact sciences and technology
Fractional differential equations
Laplace transform
Laplace transforms
Mathematical analysis
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Ordinary differential equations
Partial differential equations
Real functions
Riemann–Liouville fractional derivative
Sciences and techniques of general use
title Laplace transform and fractional differential equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A44%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laplace%20transform%20and%20fractional%20differential%20equations&rft.jtitle=Applied%20mathematics%20letters&rft.au=Kexue,%20Li&rft.date=2011-12-01&rft.volume=24&rft.issue=12&rft.spage=2019&rft.epage=2023&rft.pages=2019-2023&rft.issn=0893-9659&rft.eissn=1873-5452&rft_id=info:doi/10.1016/j.aml.2011.05.035&rft_dat=%3Cproquest_cross%3E919920206%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-f0f8b6f0333b9b366872aba35143aa6e2109f9153781e145190129c516edce003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=919920206&rft_id=info:pmid/&rfr_iscdi=true