Loading…

Modeling the formation of internal boundaries in an unidirectional fiber strand compacted in plastic state

The formation of internal boundaries in a unidirectional fiber strand during isostatic and uniaxial pressing in plastic state is studied. The process is modeled using the finite-element method (FEM). An ideal contact elastoplastic problem for a hexagonal fiber strand undergoing plane deformation is...

Full description

Saved in:
Bibliographic Details
Published in:Powder metallurgy and metal ceramics 2009-07, Vol.48 (7-8), p.388-395
Main Author: Borovik, V. G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The formation of internal boundaries in a unidirectional fiber strand during isostatic and uniaxial pressing in plastic state is studied. The process is modeled using the finite-element method (FEM). An ideal contact elastoplastic problem for a hexagonal fiber strand undergoing plane deformation is solved taking into account friction at the boundaries. For angles of 0°, 30°, 60°, and 90° between the normal to the contact area and the pressing direction, the contact area width, change in the contact area slope, and the radius vector of the cross-sectional boundary of the fiber inside the pore channel as functions of density are determined for the friction coefficient at the boundaries of fibers equal to 0 and 0.5.
ISSN:1068-1302
1573-9066
DOI:10.1007/s11106-009-9154-3