Loading…

Filamentation control in the temperature gradient argon gas

A novel technique of controlling the evolution of the filamentation was experimentally demonstrated in an argon gas-filled tube. The entrance of the filament was heated by a furnace and the other end was cooled with air, which resulted in the temperature gradient distribution along the tube. The exp...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics. B, Lasers and optics Lasers and optics, 2009-02, Vol.94 (2), p.265-271
Main Authors: Cao, S.-Y., Kong, W.-P., Wang, Z., Song, Z.-M., Qin, Y., Li, R.-X., Wang, Q.-Y., Zhang, Z.-G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c302t-270b4b6e881fb1c22f56489fa17aae566eb290c6770d2a0e39d9e8863828563a3
container_end_page 271
container_issue 2
container_start_page 265
container_title Applied physics. B, Lasers and optics
container_volume 94
creator Cao, S.-Y.
Kong, W.-P.
Wang, Z.
Song, Z.-M.
Qin, Y.
Li, R.-X.
Wang, Q.-Y.
Zhang, Z.-G.
description A novel technique of controlling the evolution of the filamentation was experimentally demonstrated in an argon gas-filled tube. The entrance of the filament was heated by a furnace and the other end was cooled with air, which resulted in the temperature gradient distribution along the tube. The experimental results show that multiple filaments are merged into a single filament and then no filament by only increasing the temperature at the entrance of the filament. Also, the filament can appear and disappear after increasing the local temperature and input pulse energy in turn. This technique offers another degree of freedom to control the filamentation and opens a new way for multi-mJ level monocycle pulse generation through filamentation in the noble gas.
doi_str_mv 10.1007/s00340-008-3337-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919924628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>919924628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-270b4b6e881fb1c22f56489fa17aae566eb290c6770d2a0e39d9e8863828563a3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEiXwA9iyIKbA-aOOLSZUUUCqxAKzdXGdkCp1iu0M_HuMUjHi4Tzcc6_uHkKuKdxRgPo-AnABFYCqOOd1xU_IggrOKpBCn5IFaCErRmt6Ti5i3EF-UqkFeVj3A-6dT5j60Zd29CmMQ9n7Mn26Mrn9wQVMU3BlF3DbZ7DE0GWyw3hJzlocors6_gX5WD-9r16qzdvz6-pxU1kOLFWshkY00ilF24ZaxtqlFEq3SGtEt5TSNUyDlXUNW4bguN7qDEuumFpKjrwgt3PuIYxfk4vJ7Pto3TCgd-MUjaZaMyGZyiSdSRvGGINrzSH0ewzfhoL59WRmTyZ7Mr-ecinIzTEdo8WhDehtH_8GGQUmWN6mIGzmYm75zgWzG6fg8-H_hP8A7FF2wg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919924628</pqid></control><display><type>article</type><title>Filamentation control in the temperature gradient argon gas</title><source>Springer Nature</source><creator>Cao, S.-Y. ; Kong, W.-P. ; Wang, Z. ; Song, Z.-M. ; Qin, Y. ; Li, R.-X. ; Wang, Q.-Y. ; Zhang, Z.-G.</creator><creatorcontrib>Cao, S.-Y. ; Kong, W.-P. ; Wang, Z. ; Song, Z.-M. ; Qin, Y. ; Li, R.-X. ; Wang, Q.-Y. ; Zhang, Z.-G.</creatorcontrib><description>A novel technique of controlling the evolution of the filamentation was experimentally demonstrated in an argon gas-filled tube. The entrance of the filament was heated by a furnace and the other end was cooled with air, which resulted in the temperature gradient distribution along the tube. The experimental results show that multiple filaments are merged into a single filament and then no filament by only increasing the temperature at the entrance of the filament. Also, the filament can appear and disappear after increasing the local temperature and input pulse energy in turn. This technique offers another degree of freedom to control the filamentation and opens a new way for multi-mJ level monocycle pulse generation through filamentation in the noble gas.</description><identifier>ISSN: 0946-2171</identifier><identifier>EISSN: 1432-0649</identifier><identifier>DOI: 10.1007/s00340-008-3337-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Argon ; Beam trapping, self-focusing and defocusing; self-phase modulation ; Engineering ; Entrances ; Evolution ; Exact sciences and technology ; Filaments ; Fundamental areas of phenomenology (including applications) ; Lasers ; Mathematical analysis ; Nonlinear optics ; Optical Devices ; Optics ; Photonics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Optics ; Temperature gradient ; Tubes ; Ultrafast processes; optical pulse generation and pulse compression</subject><ispartof>Applied physics. B, Lasers and optics, 2009-02, Vol.94 (2), p.265-271</ispartof><rights>Springer-Verlag 2008</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c302t-270b4b6e881fb1c22f56489fa17aae566eb290c6770d2a0e39d9e8863828563a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21024286$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, S.-Y.</creatorcontrib><creatorcontrib>Kong, W.-P.</creatorcontrib><creatorcontrib>Wang, Z.</creatorcontrib><creatorcontrib>Song, Z.-M.</creatorcontrib><creatorcontrib>Qin, Y.</creatorcontrib><creatorcontrib>Li, R.-X.</creatorcontrib><creatorcontrib>Wang, Q.-Y.</creatorcontrib><creatorcontrib>Zhang, Z.-G.</creatorcontrib><title>Filamentation control in the temperature gradient argon gas</title><title>Applied physics. B, Lasers and optics</title><addtitle>Appl. Phys. B</addtitle><description>A novel technique of controlling the evolution of the filamentation was experimentally demonstrated in an argon gas-filled tube. The entrance of the filament was heated by a furnace and the other end was cooled with air, which resulted in the temperature gradient distribution along the tube. The experimental results show that multiple filaments are merged into a single filament and then no filament by only increasing the temperature at the entrance of the filament. Also, the filament can appear and disappear after increasing the local temperature and input pulse energy in turn. This technique offers another degree of freedom to control the filamentation and opens a new way for multi-mJ level monocycle pulse generation through filamentation in the noble gas.</description><subject>Argon</subject><subject>Beam trapping, self-focusing and defocusing; self-phase modulation</subject><subject>Engineering</subject><subject>Entrances</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Filaments</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Lasers</subject><subject>Mathematical analysis</subject><subject>Nonlinear optics</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Optics</subject><subject>Temperature gradient</subject><subject>Tubes</subject><subject>Ultrafast processes; optical pulse generation and pulse compression</subject><issn>0946-2171</issn><issn>1432-0649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEiXwA9iyIKbA-aOOLSZUUUCqxAKzdXGdkCp1iu0M_HuMUjHi4Tzcc6_uHkKuKdxRgPo-AnABFYCqOOd1xU_IggrOKpBCn5IFaCErRmt6Ti5i3EF-UqkFeVj3A-6dT5j60Zd29CmMQ9n7Mn26Mrn9wQVMU3BlF3DbZ7DE0GWyw3hJzlocors6_gX5WD-9r16qzdvz6-pxU1kOLFWshkY00ilF24ZaxtqlFEq3SGtEt5TSNUyDlXUNW4bguN7qDEuumFpKjrwgt3PuIYxfk4vJ7Pto3TCgd-MUjaZaMyGZyiSdSRvGGINrzSH0ewzfhoL59WRmTyZ7Mr-ecinIzTEdo8WhDehtH_8GGQUmWN6mIGzmYm75zgWzG6fg8-H_hP8A7FF2wg</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Cao, S.-Y.</creator><creator>Kong, W.-P.</creator><creator>Wang, Z.</creator><creator>Song, Z.-M.</creator><creator>Qin, Y.</creator><creator>Li, R.-X.</creator><creator>Wang, Q.-Y.</creator><creator>Zhang, Z.-G.</creator><general>Springer-Verlag</general><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20090201</creationdate><title>Filamentation control in the temperature gradient argon gas</title><author>Cao, S.-Y. ; Kong, W.-P. ; Wang, Z. ; Song, Z.-M. ; Qin, Y. ; Li, R.-X. ; Wang, Q.-Y. ; Zhang, Z.-G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-270b4b6e881fb1c22f56489fa17aae566eb290c6770d2a0e39d9e8863828563a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Argon</topic><topic>Beam trapping, self-focusing and defocusing; self-phase modulation</topic><topic>Engineering</topic><topic>Entrances</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Filaments</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Lasers</topic><topic>Mathematical analysis</topic><topic>Nonlinear optics</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Optics</topic><topic>Temperature gradient</topic><topic>Tubes</topic><topic>Ultrafast processes; optical pulse generation and pulse compression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, S.-Y.</creatorcontrib><creatorcontrib>Kong, W.-P.</creatorcontrib><creatorcontrib>Wang, Z.</creatorcontrib><creatorcontrib>Song, Z.-M.</creatorcontrib><creatorcontrib>Qin, Y.</creatorcontrib><creatorcontrib>Li, R.-X.</creatorcontrib><creatorcontrib>Wang, Q.-Y.</creatorcontrib><creatorcontrib>Zhang, Z.-G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics. B, Lasers and optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, S.-Y.</au><au>Kong, W.-P.</au><au>Wang, Z.</au><au>Song, Z.-M.</au><au>Qin, Y.</au><au>Li, R.-X.</au><au>Wang, Q.-Y.</au><au>Zhang, Z.-G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Filamentation control in the temperature gradient argon gas</atitle><jtitle>Applied physics. B, Lasers and optics</jtitle><stitle>Appl. Phys. B</stitle><date>2009-02-01</date><risdate>2009</risdate><volume>94</volume><issue>2</issue><spage>265</spage><epage>271</epage><pages>265-271</pages><issn>0946-2171</issn><eissn>1432-0649</eissn><abstract>A novel technique of controlling the evolution of the filamentation was experimentally demonstrated in an argon gas-filled tube. The entrance of the filament was heated by a furnace and the other end was cooled with air, which resulted in the temperature gradient distribution along the tube. The experimental results show that multiple filaments are merged into a single filament and then no filament by only increasing the temperature at the entrance of the filament. Also, the filament can appear and disappear after increasing the local temperature and input pulse energy in turn. This technique offers another degree of freedom to control the filamentation and opens a new way for multi-mJ level monocycle pulse generation through filamentation in the noble gas.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00340-008-3337-3</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0946-2171
ispartof Applied physics. B, Lasers and optics, 2009-02, Vol.94 (2), p.265-271
issn 0946-2171
1432-0649
language eng
recordid cdi_proquest_miscellaneous_919924628
source Springer Nature
subjects Argon
Beam trapping, self-focusing and defocusing
self-phase modulation
Engineering
Entrances
Evolution
Exact sciences and technology
Filaments
Fundamental areas of phenomenology (including applications)
Lasers
Mathematical analysis
Nonlinear optics
Optical Devices
Optics
Photonics
Physical Chemistry
Physics
Physics and Astronomy
Quantum Optics
Temperature gradient
Tubes
Ultrafast processes
optical pulse generation and pulse compression
title Filamentation control in the temperature gradient argon gas
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A49%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Filamentation%20control%20in%20the%20temperature%20gradient%20argon%20gas&rft.jtitle=Applied%20physics.%20B,%20Lasers%20and%20optics&rft.au=Cao,%20S.-Y.&rft.date=2009-02-01&rft.volume=94&rft.issue=2&rft.spage=265&rft.epage=271&rft.pages=265-271&rft.issn=0946-2171&rft.eissn=1432-0649&rft_id=info:doi/10.1007/s00340-008-3337-3&rft_dat=%3Cproquest_cross%3E919924628%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c302t-270b4b6e881fb1c22f56489fa17aae566eb290c6770d2a0e39d9e8863828563a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=919924628&rft_id=info:pmid/&rfr_iscdi=true