Loading…
Filamentation control in the temperature gradient argon gas
A novel technique of controlling the evolution of the filamentation was experimentally demonstrated in an argon gas-filled tube. The entrance of the filament was heated by a furnace and the other end was cooled with air, which resulted in the temperature gradient distribution along the tube. The exp...
Saved in:
Published in: | Applied physics. B, Lasers and optics Lasers and optics, 2009-02, Vol.94 (2), p.265-271 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c302t-270b4b6e881fb1c22f56489fa17aae566eb290c6770d2a0e39d9e8863828563a3 |
container_end_page | 271 |
container_issue | 2 |
container_start_page | 265 |
container_title | Applied physics. B, Lasers and optics |
container_volume | 94 |
creator | Cao, S.-Y. Kong, W.-P. Wang, Z. Song, Z.-M. Qin, Y. Li, R.-X. Wang, Q.-Y. Zhang, Z.-G. |
description | A novel technique of controlling the evolution of the filamentation was experimentally demonstrated in an argon gas-filled tube. The entrance of the filament was heated by a furnace and the other end was cooled with air, which resulted in the temperature gradient distribution along the tube. The experimental results show that multiple filaments are merged into a single filament and then no filament by only increasing the temperature at the entrance of the filament. Also, the filament can appear and disappear after increasing the local temperature and input pulse energy in turn. This technique offers another degree of freedom to control the filamentation and opens a new way for multi-mJ level monocycle pulse generation through filamentation in the noble gas. |
doi_str_mv | 10.1007/s00340-008-3337-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919924628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>919924628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-270b4b6e881fb1c22f56489fa17aae566eb290c6770d2a0e39d9e8863828563a3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEiXwA9iyIKbA-aOOLSZUUUCqxAKzdXGdkCp1iu0M_HuMUjHi4Tzcc6_uHkKuKdxRgPo-AnABFYCqOOd1xU_IggrOKpBCn5IFaCErRmt6Ti5i3EF-UqkFeVj3A-6dT5j60Zd29CmMQ9n7Mn26Mrn9wQVMU3BlF3DbZ7DE0GWyw3hJzlocors6_gX5WD-9r16qzdvz6-pxU1kOLFWshkY00ilF24ZaxtqlFEq3SGtEt5TSNUyDlXUNW4bguN7qDEuumFpKjrwgt3PuIYxfk4vJ7Pto3TCgd-MUjaZaMyGZyiSdSRvGGINrzSH0ewzfhoL59WRmTyZ7Mr-ecinIzTEdo8WhDehtH_8GGQUmWN6mIGzmYm75zgWzG6fg8-H_hP8A7FF2wg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919924628</pqid></control><display><type>article</type><title>Filamentation control in the temperature gradient argon gas</title><source>Springer Nature</source><creator>Cao, S.-Y. ; Kong, W.-P. ; Wang, Z. ; Song, Z.-M. ; Qin, Y. ; Li, R.-X. ; Wang, Q.-Y. ; Zhang, Z.-G.</creator><creatorcontrib>Cao, S.-Y. ; Kong, W.-P. ; Wang, Z. ; Song, Z.-M. ; Qin, Y. ; Li, R.-X. ; Wang, Q.-Y. ; Zhang, Z.-G.</creatorcontrib><description>A novel technique of controlling the evolution of the filamentation was experimentally demonstrated in an argon gas-filled tube. The entrance of the filament was heated by a furnace and the other end was cooled with air, which resulted in the temperature gradient distribution along the tube. The experimental results show that multiple filaments are merged into a single filament and then no filament by only increasing the temperature at the entrance of the filament. Also, the filament can appear and disappear after increasing the local temperature and input pulse energy in turn. This technique offers another degree of freedom to control the filamentation and opens a new way for multi-mJ level monocycle pulse generation through filamentation in the noble gas.</description><identifier>ISSN: 0946-2171</identifier><identifier>EISSN: 1432-0649</identifier><identifier>DOI: 10.1007/s00340-008-3337-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Argon ; Beam trapping, self-focusing and defocusing; self-phase modulation ; Engineering ; Entrances ; Evolution ; Exact sciences and technology ; Filaments ; Fundamental areas of phenomenology (including applications) ; Lasers ; Mathematical analysis ; Nonlinear optics ; Optical Devices ; Optics ; Photonics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Optics ; Temperature gradient ; Tubes ; Ultrafast processes; optical pulse generation and pulse compression</subject><ispartof>Applied physics. B, Lasers and optics, 2009-02, Vol.94 (2), p.265-271</ispartof><rights>Springer-Verlag 2008</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c302t-270b4b6e881fb1c22f56489fa17aae566eb290c6770d2a0e39d9e8863828563a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21024286$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, S.-Y.</creatorcontrib><creatorcontrib>Kong, W.-P.</creatorcontrib><creatorcontrib>Wang, Z.</creatorcontrib><creatorcontrib>Song, Z.-M.</creatorcontrib><creatorcontrib>Qin, Y.</creatorcontrib><creatorcontrib>Li, R.-X.</creatorcontrib><creatorcontrib>Wang, Q.-Y.</creatorcontrib><creatorcontrib>Zhang, Z.-G.</creatorcontrib><title>Filamentation control in the temperature gradient argon gas</title><title>Applied physics. B, Lasers and optics</title><addtitle>Appl. Phys. B</addtitle><description>A novel technique of controlling the evolution of the filamentation was experimentally demonstrated in an argon gas-filled tube. The entrance of the filament was heated by a furnace and the other end was cooled with air, which resulted in the temperature gradient distribution along the tube. The experimental results show that multiple filaments are merged into a single filament and then no filament by only increasing the temperature at the entrance of the filament. Also, the filament can appear and disappear after increasing the local temperature and input pulse energy in turn. This technique offers another degree of freedom to control the filamentation and opens a new way for multi-mJ level monocycle pulse generation through filamentation in the noble gas.</description><subject>Argon</subject><subject>Beam trapping, self-focusing and defocusing; self-phase modulation</subject><subject>Engineering</subject><subject>Entrances</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Filaments</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Lasers</subject><subject>Mathematical analysis</subject><subject>Nonlinear optics</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Optics</subject><subject>Temperature gradient</subject><subject>Tubes</subject><subject>Ultrafast processes; optical pulse generation and pulse compression</subject><issn>0946-2171</issn><issn>1432-0649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEiXwA9iyIKbA-aOOLSZUUUCqxAKzdXGdkCp1iu0M_HuMUjHi4Tzcc6_uHkKuKdxRgPo-AnABFYCqOOd1xU_IggrOKpBCn5IFaCErRmt6Ti5i3EF-UqkFeVj3A-6dT5j60Zd29CmMQ9n7Mn26Mrn9wQVMU3BlF3DbZ7DE0GWyw3hJzlocors6_gX5WD-9r16qzdvz6-pxU1kOLFWshkY00ilF24ZaxtqlFEq3SGtEt5TSNUyDlXUNW4bguN7qDEuumFpKjrwgt3PuIYxfk4vJ7Pto3TCgd-MUjaZaMyGZyiSdSRvGGINrzSH0ewzfhoL59WRmTyZ7Mr-ecinIzTEdo8WhDehtH_8GGQUmWN6mIGzmYm75zgWzG6fg8-H_hP8A7FF2wg</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Cao, S.-Y.</creator><creator>Kong, W.-P.</creator><creator>Wang, Z.</creator><creator>Song, Z.-M.</creator><creator>Qin, Y.</creator><creator>Li, R.-X.</creator><creator>Wang, Q.-Y.</creator><creator>Zhang, Z.-G.</creator><general>Springer-Verlag</general><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20090201</creationdate><title>Filamentation control in the temperature gradient argon gas</title><author>Cao, S.-Y. ; Kong, W.-P. ; Wang, Z. ; Song, Z.-M. ; Qin, Y. ; Li, R.-X. ; Wang, Q.-Y. ; Zhang, Z.-G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-270b4b6e881fb1c22f56489fa17aae566eb290c6770d2a0e39d9e8863828563a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Argon</topic><topic>Beam trapping, self-focusing and defocusing; self-phase modulation</topic><topic>Engineering</topic><topic>Entrances</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Filaments</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Lasers</topic><topic>Mathematical analysis</topic><topic>Nonlinear optics</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Optics</topic><topic>Temperature gradient</topic><topic>Tubes</topic><topic>Ultrafast processes; optical pulse generation and pulse compression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, S.-Y.</creatorcontrib><creatorcontrib>Kong, W.-P.</creatorcontrib><creatorcontrib>Wang, Z.</creatorcontrib><creatorcontrib>Song, Z.-M.</creatorcontrib><creatorcontrib>Qin, Y.</creatorcontrib><creatorcontrib>Li, R.-X.</creatorcontrib><creatorcontrib>Wang, Q.-Y.</creatorcontrib><creatorcontrib>Zhang, Z.-G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics. B, Lasers and optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, S.-Y.</au><au>Kong, W.-P.</au><au>Wang, Z.</au><au>Song, Z.-M.</au><au>Qin, Y.</au><au>Li, R.-X.</au><au>Wang, Q.-Y.</au><au>Zhang, Z.-G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Filamentation control in the temperature gradient argon gas</atitle><jtitle>Applied physics. B, Lasers and optics</jtitle><stitle>Appl. Phys. B</stitle><date>2009-02-01</date><risdate>2009</risdate><volume>94</volume><issue>2</issue><spage>265</spage><epage>271</epage><pages>265-271</pages><issn>0946-2171</issn><eissn>1432-0649</eissn><abstract>A novel technique of controlling the evolution of the filamentation was experimentally demonstrated in an argon gas-filled tube. The entrance of the filament was heated by a furnace and the other end was cooled with air, which resulted in the temperature gradient distribution along the tube. The experimental results show that multiple filaments are merged into a single filament and then no filament by only increasing the temperature at the entrance of the filament. Also, the filament can appear and disappear after increasing the local temperature and input pulse energy in turn. This technique offers another degree of freedom to control the filamentation and opens a new way for multi-mJ level monocycle pulse generation through filamentation in the noble gas.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00340-008-3337-3</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0946-2171 |
ispartof | Applied physics. B, Lasers and optics, 2009-02, Vol.94 (2), p.265-271 |
issn | 0946-2171 1432-0649 |
language | eng |
recordid | cdi_proquest_miscellaneous_919924628 |
source | Springer Nature |
subjects | Argon Beam trapping, self-focusing and defocusing self-phase modulation Engineering Entrances Evolution Exact sciences and technology Filaments Fundamental areas of phenomenology (including applications) Lasers Mathematical analysis Nonlinear optics Optical Devices Optics Photonics Physical Chemistry Physics Physics and Astronomy Quantum Optics Temperature gradient Tubes Ultrafast processes optical pulse generation and pulse compression |
title | Filamentation control in the temperature gradient argon gas |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A49%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Filamentation%20control%20in%20the%20temperature%20gradient%20argon%20gas&rft.jtitle=Applied%20physics.%20B,%20Lasers%20and%20optics&rft.au=Cao,%20S.-Y.&rft.date=2009-02-01&rft.volume=94&rft.issue=2&rft.spage=265&rft.epage=271&rft.pages=265-271&rft.issn=0946-2171&rft.eissn=1432-0649&rft_id=info:doi/10.1007/s00340-008-3337-3&rft_dat=%3Cproquest_cross%3E919924628%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c302t-270b4b6e881fb1c22f56489fa17aae566eb290c6770d2a0e39d9e8863828563a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=919924628&rft_id=info:pmid/&rfr_iscdi=true |