Loading…

High-speed uniform parallel 3D refractive index micro-structuring of poly(methyl methacrylate) for volume phase gratings

Parallel femtosecond refractive index laser inscription of clinical grade poly(methyl methacrylate) (PMMA) at 775 nm, 170 fs pulselength is demonstrated with multiple low fluence beams generated with the aid of a spatial light modulator. Using optimised computer-generated holograms (CGHs), 16 diffra...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics. B, Lasers and optics Lasers and optics, 2010-12, Vol.101 (4), p.817-823
Main Authors: Liu, D., Kuang, Z., Perrie, W., Scully, P. J., Baum, A., Edwardson, S. P., Fearon, E., Dearden, G., Watkins, K. G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c416t-fbd223357ff4317ba8cb61e1c4e60684e3cab80ffe06e716ec5dc7edc4c4b0553
cites cdi_FETCH-LOGICAL-c416t-fbd223357ff4317ba8cb61e1c4e60684e3cab80ffe06e716ec5dc7edc4c4b0553
container_end_page 823
container_issue 4
container_start_page 817
container_title Applied physics. B, Lasers and optics
container_volume 101
creator Liu, D.
Kuang, Z.
Perrie, W.
Scully, P. J.
Baum, A.
Edwardson, S. P.
Fearon, E.
Dearden, G.
Watkins, K. G.
description Parallel femtosecond refractive index laser inscription of clinical grade poly(methyl methacrylate) (PMMA) at 775 nm, 170 fs pulselength is demonstrated with multiple low fluence beams generated with the aid of a spatial light modulator. Using optimised computer-generated holograms (CGHs), 16 diffracted near identical beams were focused simultaneously within bulk PMMA to create a series of 19 μm pitch, 5 mm×5 mm×1–4 mm thick volume phase gratings at high speed. First order diffraction efficiency rises with grating thickness in accord with diffraction theory, reaching 75% at the first Bragg angle (4 mm thick) with fabrication time around 1 hour. By carefully stitching filamentary modifications while eliminating effects such as pulse front tilt during inscription, gratings exhibit high uniformity, which has not been achieved previously using femtosecond inscription. Highly uniform modification is exhibited throughout the material consistent with the observed excellent angular selectivity and low background scatter and quantitative comparison with first order diffraction theory is satisfactory. The diffraction efficiency and hence refractive index profile shows a temporal behaviour related to the material response after exposure. Simultaneous 3D modification at different depths is also demonstrated, highlighting the potential of creating complex 3D integrated optical circuits at high speed through the application of CGHs.
doi_str_mv 10.1007/s00340-010-4205-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919925368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>919925368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-fbd223357ff4317ba8cb61e1c4e60684e3cab80ffe06e716ec5dc7edc4c4b0553</originalsourceid><addsrcrecordid>eNp9kLtO7DAURS0EEsPAB9C5QVwKg19xkvKKxwUJiQZqy3GOZ4ycB3aCmL_H0SDKe5rT7L2kvRA6Z_SaUVreJEqFpIQySiSnBSkO0IpJwQlVsj5EK1pLRTgr2TE6Semd5lNVtUJfj36zJWkEaPHcezfEDo8mmhAgYHGHI7ho7OQ_Afu-hS_ceRsHkqY422mOvt_gweFxCLs_HUzbXcDLMzbugpngCmcg_hzC3AEetyYB3kQz5VY6RUfOhARnP3-N3h7uX28fyfPLv6fbv8_ESqYm4pqWcyGK0jkpWNmYyjaKAbMSVF4gQVjTVNQ5oApKpsAWrS2htdLKhhaFWKPLPXeMw8cMadKdTxZCMD0Mc9I1q2teCFXlJNsn88CU8nA9Rt-ZuNOM6kWy3kvWWbJeJOuFfvFDN8makF311qffIheKy5qXOcf3uTQuziDq92GOfR7-H_g3-6ePCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919925368</pqid></control><display><type>article</type><title>High-speed uniform parallel 3D refractive index micro-structuring of poly(methyl methacrylate) for volume phase gratings</title><source>Springer Nature</source><creator>Liu, D. ; Kuang, Z. ; Perrie, W. ; Scully, P. J. ; Baum, A. ; Edwardson, S. P. ; Fearon, E. ; Dearden, G. ; Watkins, K. G.</creator><creatorcontrib>Liu, D. ; Kuang, Z. ; Perrie, W. ; Scully, P. J. ; Baum, A. ; Edwardson, S. P. ; Fearon, E. ; Dearden, G. ; Watkins, K. G.</creatorcontrib><description>Parallel femtosecond refractive index laser inscription of clinical grade poly(methyl methacrylate) (PMMA) at 775 nm, 170 fs pulselength is demonstrated with multiple low fluence beams generated with the aid of a spatial light modulator. Using optimised computer-generated holograms (CGHs), 16 diffracted near identical beams were focused simultaneously within bulk PMMA to create a series of 19 μm pitch, 5 mm×5 mm×1–4 mm thick volume phase gratings at high speed. First order diffraction efficiency rises with grating thickness in accord with diffraction theory, reaching 75% at the first Bragg angle (4 mm thick) with fabrication time around 1 hour. By carefully stitching filamentary modifications while eliminating effects such as pulse front tilt during inscription, gratings exhibit high uniformity, which has not been achieved previously using femtosecond inscription. Highly uniform modification is exhibited throughout the material consistent with the observed excellent angular selectivity and low background scatter and quantitative comparison with first order diffraction theory is satisfactory. The diffraction efficiency and hence refractive index profile shows a temporal behaviour related to the material response after exposure. Simultaneous 3D modification at different depths is also demonstrated, highlighting the potential of creating complex 3D integrated optical circuits at high speed through the application of CGHs.</description><identifier>ISSN: 0946-2171</identifier><identifier>EISSN: 1432-0649</identifier><identifier>DOI: 10.1007/s00340-010-4205-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Beams (radiation) ; Computer-generated holograms ; Diffraction efficiency ; Diffraction theory ; Engineering ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; High speed ; Holographic optical elements; holographic gratings ; Holography ; Lasers ; Optical Devices ; Optical elements, devices, and systems ; Optical processors, correlators, and modulators ; Optics ; Photonics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Polymethyl methacrylates ; Quantum Optics ; Refractive index ; Refractivity ; Three dimensional ; Volume holograms</subject><ispartof>Applied physics. B, Lasers and optics, 2010-12, Vol.101 (4), p.817-823</ispartof><rights>Springer-Verlag 2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-fbd223357ff4317ba8cb61e1c4e60684e3cab80ffe06e716ec5dc7edc4c4b0553</citedby><cites>FETCH-LOGICAL-c416t-fbd223357ff4317ba8cb61e1c4e60684e3cab80ffe06e716ec5dc7edc4c4b0553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23624927$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, D.</creatorcontrib><creatorcontrib>Kuang, Z.</creatorcontrib><creatorcontrib>Perrie, W.</creatorcontrib><creatorcontrib>Scully, P. J.</creatorcontrib><creatorcontrib>Baum, A.</creatorcontrib><creatorcontrib>Edwardson, S. P.</creatorcontrib><creatorcontrib>Fearon, E.</creatorcontrib><creatorcontrib>Dearden, G.</creatorcontrib><creatorcontrib>Watkins, K. G.</creatorcontrib><title>High-speed uniform parallel 3D refractive index micro-structuring of poly(methyl methacrylate) for volume phase gratings</title><title>Applied physics. B, Lasers and optics</title><addtitle>Appl. Phys. B</addtitle><description>Parallel femtosecond refractive index laser inscription of clinical grade poly(methyl methacrylate) (PMMA) at 775 nm, 170 fs pulselength is demonstrated with multiple low fluence beams generated with the aid of a spatial light modulator. Using optimised computer-generated holograms (CGHs), 16 diffracted near identical beams were focused simultaneously within bulk PMMA to create a series of 19 μm pitch, 5 mm×5 mm×1–4 mm thick volume phase gratings at high speed. First order diffraction efficiency rises with grating thickness in accord with diffraction theory, reaching 75% at the first Bragg angle (4 mm thick) with fabrication time around 1 hour. By carefully stitching filamentary modifications while eliminating effects such as pulse front tilt during inscription, gratings exhibit high uniformity, which has not been achieved previously using femtosecond inscription. Highly uniform modification is exhibited throughout the material consistent with the observed excellent angular selectivity and low background scatter and quantitative comparison with first order diffraction theory is satisfactory. The diffraction efficiency and hence refractive index profile shows a temporal behaviour related to the material response after exposure. Simultaneous 3D modification at different depths is also demonstrated, highlighting the potential of creating complex 3D integrated optical circuits at high speed through the application of CGHs.</description><subject>Beams (radiation)</subject><subject>Computer-generated holograms</subject><subject>Diffraction efficiency</subject><subject>Diffraction theory</subject><subject>Engineering</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>High speed</subject><subject>Holographic optical elements; holographic gratings</subject><subject>Holography</subject><subject>Lasers</subject><subject>Optical Devices</subject><subject>Optical elements, devices, and systems</subject><subject>Optical processors, correlators, and modulators</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polymethyl methacrylates</subject><subject>Quantum Optics</subject><subject>Refractive index</subject><subject>Refractivity</subject><subject>Three dimensional</subject><subject>Volume holograms</subject><issn>0946-2171</issn><issn>1432-0649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kLtO7DAURS0EEsPAB9C5QVwKg19xkvKKxwUJiQZqy3GOZ4ycB3aCmL_H0SDKe5rT7L2kvRA6Z_SaUVreJEqFpIQySiSnBSkO0IpJwQlVsj5EK1pLRTgr2TE6Semd5lNVtUJfj36zJWkEaPHcezfEDo8mmhAgYHGHI7ho7OQ_Afu-hS_ceRsHkqY422mOvt_gweFxCLs_HUzbXcDLMzbugpngCmcg_hzC3AEetyYB3kQz5VY6RUfOhARnP3-N3h7uX28fyfPLv6fbv8_ESqYm4pqWcyGK0jkpWNmYyjaKAbMSVF4gQVjTVNQ5oApKpsAWrS2htdLKhhaFWKPLPXeMw8cMadKdTxZCMD0Mc9I1q2teCFXlJNsn88CU8nA9Rt-ZuNOM6kWy3kvWWbJeJOuFfvFDN8makF311qffIheKy5qXOcf3uTQuziDq92GOfR7-H_g3-6ePCw</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Liu, D.</creator><creator>Kuang, Z.</creator><creator>Perrie, W.</creator><creator>Scully, P. J.</creator><creator>Baum, A.</creator><creator>Edwardson, S. P.</creator><creator>Fearon, E.</creator><creator>Dearden, G.</creator><creator>Watkins, K. G.</creator><general>Springer-Verlag</general><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20101201</creationdate><title>High-speed uniform parallel 3D refractive index micro-structuring of poly(methyl methacrylate) for volume phase gratings</title><author>Liu, D. ; Kuang, Z. ; Perrie, W. ; Scully, P. J. ; Baum, A. ; Edwardson, S. P. ; Fearon, E. ; Dearden, G. ; Watkins, K. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-fbd223357ff4317ba8cb61e1c4e60684e3cab80ffe06e716ec5dc7edc4c4b0553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Beams (radiation)</topic><topic>Computer-generated holograms</topic><topic>Diffraction efficiency</topic><topic>Diffraction theory</topic><topic>Engineering</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>High speed</topic><topic>Holographic optical elements; holographic gratings</topic><topic>Holography</topic><topic>Lasers</topic><topic>Optical Devices</topic><topic>Optical elements, devices, and systems</topic><topic>Optical processors, correlators, and modulators</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polymethyl methacrylates</topic><topic>Quantum Optics</topic><topic>Refractive index</topic><topic>Refractivity</topic><topic>Three dimensional</topic><topic>Volume holograms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, D.</creatorcontrib><creatorcontrib>Kuang, Z.</creatorcontrib><creatorcontrib>Perrie, W.</creatorcontrib><creatorcontrib>Scully, P. J.</creatorcontrib><creatorcontrib>Baum, A.</creatorcontrib><creatorcontrib>Edwardson, S. P.</creatorcontrib><creatorcontrib>Fearon, E.</creatorcontrib><creatorcontrib>Dearden, G.</creatorcontrib><creatorcontrib>Watkins, K. G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics. B, Lasers and optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, D.</au><au>Kuang, Z.</au><au>Perrie, W.</au><au>Scully, P. J.</au><au>Baum, A.</au><au>Edwardson, S. P.</au><au>Fearon, E.</au><au>Dearden, G.</au><au>Watkins, K. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-speed uniform parallel 3D refractive index micro-structuring of poly(methyl methacrylate) for volume phase gratings</atitle><jtitle>Applied physics. B, Lasers and optics</jtitle><stitle>Appl. Phys. B</stitle><date>2010-12-01</date><risdate>2010</risdate><volume>101</volume><issue>4</issue><spage>817</spage><epage>823</epage><pages>817-823</pages><issn>0946-2171</issn><eissn>1432-0649</eissn><abstract>Parallel femtosecond refractive index laser inscription of clinical grade poly(methyl methacrylate) (PMMA) at 775 nm, 170 fs pulselength is demonstrated with multiple low fluence beams generated with the aid of a spatial light modulator. Using optimised computer-generated holograms (CGHs), 16 diffracted near identical beams were focused simultaneously within bulk PMMA to create a series of 19 μm pitch, 5 mm×5 mm×1–4 mm thick volume phase gratings at high speed. First order diffraction efficiency rises with grating thickness in accord with diffraction theory, reaching 75% at the first Bragg angle (4 mm thick) with fabrication time around 1 hour. By carefully stitching filamentary modifications while eliminating effects such as pulse front tilt during inscription, gratings exhibit high uniformity, which has not been achieved previously using femtosecond inscription. Highly uniform modification is exhibited throughout the material consistent with the observed excellent angular selectivity and low background scatter and quantitative comparison with first order diffraction theory is satisfactory. The diffraction efficiency and hence refractive index profile shows a temporal behaviour related to the material response after exposure. Simultaneous 3D modification at different depths is also demonstrated, highlighting the potential of creating complex 3D integrated optical circuits at high speed through the application of CGHs.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00340-010-4205-5</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0946-2171
ispartof Applied physics. B, Lasers and optics, 2010-12, Vol.101 (4), p.817-823
issn 0946-2171
1432-0649
language eng
recordid cdi_proquest_miscellaneous_919925368
source Springer Nature
subjects Beams (radiation)
Computer-generated holograms
Diffraction efficiency
Diffraction theory
Engineering
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
High speed
Holographic optical elements
holographic gratings
Holography
Lasers
Optical Devices
Optical elements, devices, and systems
Optical processors, correlators, and modulators
Optics
Photonics
Physical Chemistry
Physics
Physics and Astronomy
Polymethyl methacrylates
Quantum Optics
Refractive index
Refractivity
Three dimensional
Volume holograms
title High-speed uniform parallel 3D refractive index micro-structuring of poly(methyl methacrylate) for volume phase gratings
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A48%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-speed%20uniform%20parallel%203D%20refractive%20index%20micro-structuring%20of%20poly(methyl%20methacrylate)%20for%20volume%20phase%20gratings&rft.jtitle=Applied%20physics.%20B,%20Lasers%20and%20optics&rft.au=Liu,%20D.&rft.date=2010-12-01&rft.volume=101&rft.issue=4&rft.spage=817&rft.epage=823&rft.pages=817-823&rft.issn=0946-2171&rft.eissn=1432-0649&rft_id=info:doi/10.1007/s00340-010-4205-5&rft_dat=%3Cproquest_cross%3E919925368%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c416t-fbd223357ff4317ba8cb61e1c4e60684e3cab80ffe06e716ec5dc7edc4c4b0553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=919925368&rft_id=info:pmid/&rfr_iscdi=true