Loading…

An ensemble-based evolutionary framework for coping with distributed intrusion detection

A distributed data mining algorithm to improve the detection accuracy when classifying malicious or unauthorized network activity is presented. The algorithm is based on genetic programming (GP) extended with the ensemble paradigm. GP ensemble is particularly suitable for distributed intrusion detec...

Full description

Saved in:
Bibliographic Details
Published in:Genetic programming and evolvable machines 2010-06, Vol.11 (2), p.131-146
Main Authors: Folino, Gianluigi, Pizzuti, Clara, Spezzano, Giandomenico
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c320t-497be6ddaed995aa86fd211dc80d3b8dc7b369cf222708508e59c9841c2c64123
cites cdi_FETCH-LOGICAL-c320t-497be6ddaed995aa86fd211dc80d3b8dc7b369cf222708508e59c9841c2c64123
container_end_page 146
container_issue 2
container_start_page 131
container_title Genetic programming and evolvable machines
container_volume 11
creator Folino, Gianluigi
Pizzuti, Clara
Spezzano, Giandomenico
description A distributed data mining algorithm to improve the detection accuracy when classifying malicious or unauthorized network activity is presented. The algorithm is based on genetic programming (GP) extended with the ensemble paradigm. GP ensemble is particularly suitable for distributed intrusion detection because it allows to build a network profile by combining different classifiers that together provide complementary information. The main novelty of the algorithm is that data is distributed across multiple autonomous sites and the learner component acquires useful knowledge from this data in a cooperative way. The network profile is then used to predict abnormal behavior. Experiments on the KDD Cup 1999 Data show the capability of genetic programming in successfully dealing with the problem of intrusion detection on distributed data.
doi_str_mv 10.1007/s10710-010-9101-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919927332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>919927332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-497be6ddaed995aa86fd211dc80d3b8dc7b369cf222708508e59c9841c2c64123</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhiMEEqXwA9iyMRn80djxWFV8SZVYQGKzHPtSXBK72AkV_x5HYWY43Q3vc9L7FMU1wbcEY3GXCBYEI5xHEkwQPykWpBIMCc7oab5ZLRGtBD8vLlLaY0w4reSieF_7EnyCvukANTqBLeE7dOPggtfxp2yj7uEY4mfZhliacHB-Vx7d8FFal4bomnHIiPNDHFNGSgsDmAm-LM5a3SW4-tvL4u3h_nXzhLYvj8-b9RYZRvGAVlI0wK3VYKWstK55aykh1tTYsqa2RjSMS9NSSgWuK1xDJY2sV8RQw1eEsmVxM_89xPA1QhpU75KBrtMewpiUJFJSwdiUJHPSxJBShFYdoutzSUWwmiSqWaLKEtUkUfHM0JlJOet3ENU-jNHnQv9Av6F3djk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919927332</pqid></control><display><type>article</type><title>An ensemble-based evolutionary framework for coping with distributed intrusion detection</title><source>Springer Nature</source><creator>Folino, Gianluigi ; Pizzuti, Clara ; Spezzano, Giandomenico</creator><creatorcontrib>Folino, Gianluigi ; Pizzuti, Clara ; Spezzano, Giandomenico</creatorcontrib><description>A distributed data mining algorithm to improve the detection accuracy when classifying malicious or unauthorized network activity is presented. The algorithm is based on genetic programming (GP) extended with the ensemble paradigm. GP ensemble is particularly suitable for distributed intrusion detection because it allows to build a network profile by combining different classifiers that together provide complementary information. The main novelty of the algorithm is that data is distributed across multiple autonomous sites and the learner component acquires useful knowledge from this data in a cooperative way. The network profile is then used to predict abnormal behavior. Experiments on the KDD Cup 1999 Data show the capability of genetic programming in successfully dealing with the problem of intrusion detection on distributed data.</description><identifier>ISSN: 1389-2576</identifier><identifier>EISSN: 1573-7632</identifier><identifier>DOI: 10.1007/s10710-010-9101-6</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Biomedical Engineering and Bioengineering ; Classification ; Compilers ; Computer Science ; Construction ; Dealing ; Electrical Engineering ; Genetics ; Interpreters ; Intrusion ; Networks ; Original Paper ; Programming ; Programming Languages ; Programming Techniques ; Software Engineering/Programming and Operating Systems</subject><ispartof>Genetic programming and evolvable machines, 2010-06, Vol.11 (2), p.131-146</ispartof><rights>Springer Science+Business Media, LLC 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-497be6ddaed995aa86fd211dc80d3b8dc7b369cf222708508e59c9841c2c64123</citedby><cites>FETCH-LOGICAL-c320t-497be6ddaed995aa86fd211dc80d3b8dc7b369cf222708508e59c9841c2c64123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Folino, Gianluigi</creatorcontrib><creatorcontrib>Pizzuti, Clara</creatorcontrib><creatorcontrib>Spezzano, Giandomenico</creatorcontrib><title>An ensemble-based evolutionary framework for coping with distributed intrusion detection</title><title>Genetic programming and evolvable machines</title><addtitle>Genet Program Evolvable Mach</addtitle><description>A distributed data mining algorithm to improve the detection accuracy when classifying malicious or unauthorized network activity is presented. The algorithm is based on genetic programming (GP) extended with the ensemble paradigm. GP ensemble is particularly suitable for distributed intrusion detection because it allows to build a network profile by combining different classifiers that together provide complementary information. The main novelty of the algorithm is that data is distributed across multiple autonomous sites and the learner component acquires useful knowledge from this data in a cooperative way. The network profile is then used to predict abnormal behavior. Experiments on the KDD Cup 1999 Data show the capability of genetic programming in successfully dealing with the problem of intrusion detection on distributed data.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Classification</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Construction</subject><subject>Dealing</subject><subject>Electrical Engineering</subject><subject>Genetics</subject><subject>Interpreters</subject><subject>Intrusion</subject><subject>Networks</subject><subject>Original Paper</subject><subject>Programming</subject><subject>Programming Languages</subject><subject>Programming Techniques</subject><subject>Software Engineering/Programming and Operating Systems</subject><issn>1389-2576</issn><issn>1573-7632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhiMEEqXwA9iyMRn80djxWFV8SZVYQGKzHPtSXBK72AkV_x5HYWY43Q3vc9L7FMU1wbcEY3GXCBYEI5xHEkwQPykWpBIMCc7oab5ZLRGtBD8vLlLaY0w4reSieF_7EnyCvukANTqBLeE7dOPggtfxp2yj7uEY4mfZhliacHB-Vx7d8FFal4bomnHIiPNDHFNGSgsDmAm-LM5a3SW4-tvL4u3h_nXzhLYvj8-b9RYZRvGAVlI0wK3VYKWstK55aykh1tTYsqa2RjSMS9NSSgWuK1xDJY2sV8RQw1eEsmVxM_89xPA1QhpU75KBrtMewpiUJFJSwdiUJHPSxJBShFYdoutzSUWwmiSqWaLKEtUkUfHM0JlJOet3ENU-jNHnQv9Av6F3djk</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Folino, Gianluigi</creator><creator>Pizzuti, Clara</creator><creator>Spezzano, Giandomenico</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100601</creationdate><title>An ensemble-based evolutionary framework for coping with distributed intrusion detection</title><author>Folino, Gianluigi ; Pizzuti, Clara ; Spezzano, Giandomenico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-497be6ddaed995aa86fd211dc80d3b8dc7b369cf222708508e59c9841c2c64123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Classification</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Construction</topic><topic>Dealing</topic><topic>Electrical Engineering</topic><topic>Genetics</topic><topic>Interpreters</topic><topic>Intrusion</topic><topic>Networks</topic><topic>Original Paper</topic><topic>Programming</topic><topic>Programming Languages</topic><topic>Programming Techniques</topic><topic>Software Engineering/Programming and Operating Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Folino, Gianluigi</creatorcontrib><creatorcontrib>Pizzuti, Clara</creatorcontrib><creatorcontrib>Spezzano, Giandomenico</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Genetic programming and evolvable machines</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Folino, Gianluigi</au><au>Pizzuti, Clara</au><au>Spezzano, Giandomenico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An ensemble-based evolutionary framework for coping with distributed intrusion detection</atitle><jtitle>Genetic programming and evolvable machines</jtitle><stitle>Genet Program Evolvable Mach</stitle><date>2010-06-01</date><risdate>2010</risdate><volume>11</volume><issue>2</issue><spage>131</spage><epage>146</epage><pages>131-146</pages><issn>1389-2576</issn><eissn>1573-7632</eissn><abstract>A distributed data mining algorithm to improve the detection accuracy when classifying malicious or unauthorized network activity is presented. The algorithm is based on genetic programming (GP) extended with the ensemble paradigm. GP ensemble is particularly suitable for distributed intrusion detection because it allows to build a network profile by combining different classifiers that together provide complementary information. The main novelty of the algorithm is that data is distributed across multiple autonomous sites and the learner component acquires useful knowledge from this data in a cooperative way. The network profile is then used to predict abnormal behavior. Experiments on the KDD Cup 1999 Data show the capability of genetic programming in successfully dealing with the problem of intrusion detection on distributed data.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10710-010-9101-6</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1389-2576
ispartof Genetic programming and evolvable machines, 2010-06, Vol.11 (2), p.131-146
issn 1389-2576
1573-7632
language eng
recordid cdi_proquest_miscellaneous_919927332
source Springer Nature
subjects Algorithms
Artificial Intelligence
Biomedical Engineering and Bioengineering
Classification
Compilers
Computer Science
Construction
Dealing
Electrical Engineering
Genetics
Interpreters
Intrusion
Networks
Original Paper
Programming
Programming Languages
Programming Techniques
Software Engineering/Programming and Operating Systems
title An ensemble-based evolutionary framework for coping with distributed intrusion detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A40%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20ensemble-based%20evolutionary%20framework%20for%20coping%20with%20distributed%20intrusion%20detection&rft.jtitle=Genetic%20programming%20and%20evolvable%20machines&rft.au=Folino,%20Gianluigi&rft.date=2010-06-01&rft.volume=11&rft.issue=2&rft.spage=131&rft.epage=146&rft.pages=131-146&rft.issn=1389-2576&rft.eissn=1573-7632&rft_id=info:doi/10.1007/s10710-010-9101-6&rft_dat=%3Cproquest_cross%3E919927332%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c320t-497be6ddaed995aa86fd211dc80d3b8dc7b369cf222708508e59c9841c2c64123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=919927332&rft_id=info:pmid/&rfr_iscdi=true