Loading…
An ensemble-based evolutionary framework for coping with distributed intrusion detection
A distributed data mining algorithm to improve the detection accuracy when classifying malicious or unauthorized network activity is presented. The algorithm is based on genetic programming (GP) extended with the ensemble paradigm. GP ensemble is particularly suitable for distributed intrusion detec...
Saved in:
Published in: | Genetic programming and evolvable machines 2010-06, Vol.11 (2), p.131-146 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c320t-497be6ddaed995aa86fd211dc80d3b8dc7b369cf222708508e59c9841c2c64123 |
---|---|
cites | cdi_FETCH-LOGICAL-c320t-497be6ddaed995aa86fd211dc80d3b8dc7b369cf222708508e59c9841c2c64123 |
container_end_page | 146 |
container_issue | 2 |
container_start_page | 131 |
container_title | Genetic programming and evolvable machines |
container_volume | 11 |
creator | Folino, Gianluigi Pizzuti, Clara Spezzano, Giandomenico |
description | A distributed data mining algorithm to improve the detection accuracy when classifying malicious or unauthorized network activity is presented. The algorithm is based on genetic programming (GP) extended with the ensemble paradigm. GP ensemble is particularly suitable for distributed intrusion detection because it allows to build a
network profile
by combining different classifiers that together provide complementary information. The main novelty of the algorithm is that data is distributed across multiple autonomous sites and the learner component acquires useful knowledge from this data in a cooperative way. The network profile is then used to predict abnormal behavior. Experiments on the KDD Cup 1999 Data show the capability of genetic programming in successfully dealing with the problem of intrusion detection on distributed data. |
doi_str_mv | 10.1007/s10710-010-9101-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919927332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>919927332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-497be6ddaed995aa86fd211dc80d3b8dc7b369cf222708508e59c9841c2c64123</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhiMEEqXwA9iyMRn80djxWFV8SZVYQGKzHPtSXBK72AkV_x5HYWY43Q3vc9L7FMU1wbcEY3GXCBYEI5xHEkwQPykWpBIMCc7oab5ZLRGtBD8vLlLaY0w4reSieF_7EnyCvukANTqBLeE7dOPggtfxp2yj7uEY4mfZhliacHB-Vx7d8FFal4bomnHIiPNDHFNGSgsDmAm-LM5a3SW4-tvL4u3h_nXzhLYvj8-b9RYZRvGAVlI0wK3VYKWstK55aykh1tTYsqa2RjSMS9NSSgWuK1xDJY2sV8RQw1eEsmVxM_89xPA1QhpU75KBrtMewpiUJFJSwdiUJHPSxJBShFYdoutzSUWwmiSqWaLKEtUkUfHM0JlJOet3ENU-jNHnQv9Av6F3djk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919927332</pqid></control><display><type>article</type><title>An ensemble-based evolutionary framework for coping with distributed intrusion detection</title><source>Springer Nature</source><creator>Folino, Gianluigi ; Pizzuti, Clara ; Spezzano, Giandomenico</creator><creatorcontrib>Folino, Gianluigi ; Pizzuti, Clara ; Spezzano, Giandomenico</creatorcontrib><description>A distributed data mining algorithm to improve the detection accuracy when classifying malicious or unauthorized network activity is presented. The algorithm is based on genetic programming (GP) extended with the ensemble paradigm. GP ensemble is particularly suitable for distributed intrusion detection because it allows to build a
network profile
by combining different classifiers that together provide complementary information. The main novelty of the algorithm is that data is distributed across multiple autonomous sites and the learner component acquires useful knowledge from this data in a cooperative way. The network profile is then used to predict abnormal behavior. Experiments on the KDD Cup 1999 Data show the capability of genetic programming in successfully dealing with the problem of intrusion detection on distributed data.</description><identifier>ISSN: 1389-2576</identifier><identifier>EISSN: 1573-7632</identifier><identifier>DOI: 10.1007/s10710-010-9101-6</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Biomedical Engineering and Bioengineering ; Classification ; Compilers ; Computer Science ; Construction ; Dealing ; Electrical Engineering ; Genetics ; Interpreters ; Intrusion ; Networks ; Original Paper ; Programming ; Programming Languages ; Programming Techniques ; Software Engineering/Programming and Operating Systems</subject><ispartof>Genetic programming and evolvable machines, 2010-06, Vol.11 (2), p.131-146</ispartof><rights>Springer Science+Business Media, LLC 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-497be6ddaed995aa86fd211dc80d3b8dc7b369cf222708508e59c9841c2c64123</citedby><cites>FETCH-LOGICAL-c320t-497be6ddaed995aa86fd211dc80d3b8dc7b369cf222708508e59c9841c2c64123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Folino, Gianluigi</creatorcontrib><creatorcontrib>Pizzuti, Clara</creatorcontrib><creatorcontrib>Spezzano, Giandomenico</creatorcontrib><title>An ensemble-based evolutionary framework for coping with distributed intrusion detection</title><title>Genetic programming and evolvable machines</title><addtitle>Genet Program Evolvable Mach</addtitle><description>A distributed data mining algorithm to improve the detection accuracy when classifying malicious or unauthorized network activity is presented. The algorithm is based on genetic programming (GP) extended with the ensemble paradigm. GP ensemble is particularly suitable for distributed intrusion detection because it allows to build a
network profile
by combining different classifiers that together provide complementary information. The main novelty of the algorithm is that data is distributed across multiple autonomous sites and the learner component acquires useful knowledge from this data in a cooperative way. The network profile is then used to predict abnormal behavior. Experiments on the KDD Cup 1999 Data show the capability of genetic programming in successfully dealing with the problem of intrusion detection on distributed data.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Classification</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Construction</subject><subject>Dealing</subject><subject>Electrical Engineering</subject><subject>Genetics</subject><subject>Interpreters</subject><subject>Intrusion</subject><subject>Networks</subject><subject>Original Paper</subject><subject>Programming</subject><subject>Programming Languages</subject><subject>Programming Techniques</subject><subject>Software Engineering/Programming and Operating Systems</subject><issn>1389-2576</issn><issn>1573-7632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhiMEEqXwA9iyMRn80djxWFV8SZVYQGKzHPtSXBK72AkV_x5HYWY43Q3vc9L7FMU1wbcEY3GXCBYEI5xHEkwQPykWpBIMCc7oab5ZLRGtBD8vLlLaY0w4reSieF_7EnyCvukANTqBLeE7dOPggtfxp2yj7uEY4mfZhliacHB-Vx7d8FFal4bomnHIiPNDHFNGSgsDmAm-LM5a3SW4-tvL4u3h_nXzhLYvj8-b9RYZRvGAVlI0wK3VYKWstK55aykh1tTYsqa2RjSMS9NSSgWuK1xDJY2sV8RQw1eEsmVxM_89xPA1QhpU75KBrtMewpiUJFJSwdiUJHPSxJBShFYdoutzSUWwmiSqWaLKEtUkUfHM0JlJOet3ENU-jNHnQv9Av6F3djk</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Folino, Gianluigi</creator><creator>Pizzuti, Clara</creator><creator>Spezzano, Giandomenico</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100601</creationdate><title>An ensemble-based evolutionary framework for coping with distributed intrusion detection</title><author>Folino, Gianluigi ; Pizzuti, Clara ; Spezzano, Giandomenico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-497be6ddaed995aa86fd211dc80d3b8dc7b369cf222708508e59c9841c2c64123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Classification</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Construction</topic><topic>Dealing</topic><topic>Electrical Engineering</topic><topic>Genetics</topic><topic>Interpreters</topic><topic>Intrusion</topic><topic>Networks</topic><topic>Original Paper</topic><topic>Programming</topic><topic>Programming Languages</topic><topic>Programming Techniques</topic><topic>Software Engineering/Programming and Operating Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Folino, Gianluigi</creatorcontrib><creatorcontrib>Pizzuti, Clara</creatorcontrib><creatorcontrib>Spezzano, Giandomenico</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Genetic programming and evolvable machines</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Folino, Gianluigi</au><au>Pizzuti, Clara</au><au>Spezzano, Giandomenico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An ensemble-based evolutionary framework for coping with distributed intrusion detection</atitle><jtitle>Genetic programming and evolvable machines</jtitle><stitle>Genet Program Evolvable Mach</stitle><date>2010-06-01</date><risdate>2010</risdate><volume>11</volume><issue>2</issue><spage>131</spage><epage>146</epage><pages>131-146</pages><issn>1389-2576</issn><eissn>1573-7632</eissn><abstract>A distributed data mining algorithm to improve the detection accuracy when classifying malicious or unauthorized network activity is presented. The algorithm is based on genetic programming (GP) extended with the ensemble paradigm. GP ensemble is particularly suitable for distributed intrusion detection because it allows to build a
network profile
by combining different classifiers that together provide complementary information. The main novelty of the algorithm is that data is distributed across multiple autonomous sites and the learner component acquires useful knowledge from this data in a cooperative way. The network profile is then used to predict abnormal behavior. Experiments on the KDD Cup 1999 Data show the capability of genetic programming in successfully dealing with the problem of intrusion detection on distributed data.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10710-010-9101-6</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1389-2576 |
ispartof | Genetic programming and evolvable machines, 2010-06, Vol.11 (2), p.131-146 |
issn | 1389-2576 1573-7632 |
language | eng |
recordid | cdi_proquest_miscellaneous_919927332 |
source | Springer Nature |
subjects | Algorithms Artificial Intelligence Biomedical Engineering and Bioengineering Classification Compilers Computer Science Construction Dealing Electrical Engineering Genetics Interpreters Intrusion Networks Original Paper Programming Programming Languages Programming Techniques Software Engineering/Programming and Operating Systems |
title | An ensemble-based evolutionary framework for coping with distributed intrusion detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A40%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20ensemble-based%20evolutionary%20framework%20for%20coping%20with%20distributed%20intrusion%20detection&rft.jtitle=Genetic%20programming%20and%20evolvable%20machines&rft.au=Folino,%20Gianluigi&rft.date=2010-06-01&rft.volume=11&rft.issue=2&rft.spage=131&rft.epage=146&rft.pages=131-146&rft.issn=1389-2576&rft.eissn=1573-7632&rft_id=info:doi/10.1007/s10710-010-9101-6&rft_dat=%3Cproquest_cross%3E919927332%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c320t-497be6ddaed995aa86fd211dc80d3b8dc7b369cf222708508e59c9841c2c64123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=919927332&rft_id=info:pmid/&rfr_iscdi=true |