Loading…

Convergence of Hybrid Space Mapping Algorithms

The space mapping technique is intended for optimization of engineering models which involve very expensive function evaluations. It may be considered a preprocessing method which often provides a very efficient initial phase of an optimization procedure. However, the ultimate rate of convergence ma...

Full description

Saved in:
Bibliographic Details
Published in:Optimization and engineering 2004-06, Vol.5 (2), p.145-156
Main Authors: Madsen, Kaj, Søndergaard, Jacob
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c225t-10e9c429e30397e0a8c80e98dc6dc313707877e11c3af9d3ac3a77bea805bf063
cites
container_end_page 156
container_issue 2
container_start_page 145
container_title Optimization and engineering
container_volume 5
creator Madsen, Kaj
Søndergaard, Jacob
description The space mapping technique is intended for optimization of engineering models which involve very expensive function evaluations. It may be considered a preprocessing method which often provides a very efficient initial phase of an optimization procedure. However, the ultimate rate of convergence may be poor, or the method may even fail to converge to a stationary point. We consider a convex combination of the space mapping technique with a classical optimization technique. The function to be optimized has the form H [cir f where H : R super( )m arrow right R is convex and f : R super( )n arrow right R super( )mis smooth. Experience indicates that the combined method maintains the initial efficiency of the space mapping technique. We prove that the global convergence property of the classical technique is also maintained: The combined method provides convergence to the set of stationary points of H [cir f.
doi_str_mv 10.1023/B:OPTE.0000033372.34626.49
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919930562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>919930562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-10e9c429e30397e0a8c80e98dc6dc313707877e11c3af9d3ac3a77bea805bf063</originalsourceid><addsrcrecordid>eNpFkFFLwzAUhYMoOKf_ofjiU-tNbtoke9vG5oTJBOdzSNO0Vrq2Jpuwf2_nBO_LuedwOA8fIfcUEgoMH2eTzet2kcDpEFGwBHnGsoSrCzKiqcCYKcYvhx-lijlncE1uQvgEoFnK5Igk8679dr5yrXVRV0arY-7rInrrzeBfTN_XbRVNm6rz9f5jF27JVWma4O7-dEzel4vtfBWvN0_P8-k6toyl-5iCU5Yz5RBQCQdGWjlEsrBZYZGiACGFcJRaNKUq0AwqRO6MhDQvIcMxeTjv9r77Oriw17s6WNc0pnXdIWhFlUJIMzY0J-em9V0I3pW69_XO-KOmoE-M9EyfGOl_RvqXkeYKfwCgW1nF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919930562</pqid></control><display><type>article</type><title>Convergence of Hybrid Space Mapping Algorithms</title><source>Springer Nature</source><creator>Madsen, Kaj ; Søndergaard, Jacob</creator><creatorcontrib>Madsen, Kaj ; Søndergaard, Jacob</creatorcontrib><description>The space mapping technique is intended for optimization of engineering models which involve very expensive function evaluations. It may be considered a preprocessing method which often provides a very efficient initial phase of an optimization procedure. However, the ultimate rate of convergence may be poor, or the method may even fail to converge to a stationary point. We consider a convex combination of the space mapping technique with a classical optimization technique. The function to be optimized has the form H [cir f where H : R super( )m arrow right R is convex and f : R super( )n arrow right R super( )mis smooth. Experience indicates that the combined method maintains the initial efficiency of the space mapping technique. We prove that the global convergence property of the classical technique is also maintained: The combined method provides convergence to the set of stationary points of H [cir f.</description><identifier>ISSN: 1389-4420</identifier><identifier>EISSN: 1573-2924</identifier><identifier>DOI: 10.1023/B:OPTE.0000033372.34626.49</identifier><language>eng</language><subject>Algorithms ; Convergence ; Mapping ; Mathematical models ; Optimization ; Preprocessing</subject><ispartof>Optimization and engineering, 2004-06, Vol.5 (2), p.145-156</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-10e9c429e30397e0a8c80e98dc6dc313707877e11c3af9d3ac3a77bea805bf063</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Madsen, Kaj</creatorcontrib><creatorcontrib>Søndergaard, Jacob</creatorcontrib><title>Convergence of Hybrid Space Mapping Algorithms</title><title>Optimization and engineering</title><description>The space mapping technique is intended for optimization of engineering models which involve very expensive function evaluations. It may be considered a preprocessing method which often provides a very efficient initial phase of an optimization procedure. However, the ultimate rate of convergence may be poor, or the method may even fail to converge to a stationary point. We consider a convex combination of the space mapping technique with a classical optimization technique. The function to be optimized has the form H [cir f where H : R super( )m arrow right R is convex and f : R super( )n arrow right R super( )mis smooth. Experience indicates that the combined method maintains the initial efficiency of the space mapping technique. We prove that the global convergence property of the classical technique is also maintained: The combined method provides convergence to the set of stationary points of H [cir f.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Mapping</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Preprocessing</subject><issn>1389-4420</issn><issn>1573-2924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpFkFFLwzAUhYMoOKf_ofjiU-tNbtoke9vG5oTJBOdzSNO0Vrq2Jpuwf2_nBO_LuedwOA8fIfcUEgoMH2eTzet2kcDpEFGwBHnGsoSrCzKiqcCYKcYvhx-lijlncE1uQvgEoFnK5Igk8679dr5yrXVRV0arY-7rInrrzeBfTN_XbRVNm6rz9f5jF27JVWma4O7-dEzel4vtfBWvN0_P8-k6toyl-5iCU5Yz5RBQCQdGWjlEsrBZYZGiACGFcJRaNKUq0AwqRO6MhDQvIcMxeTjv9r77Oriw17s6WNc0pnXdIWhFlUJIMzY0J-em9V0I3pW69_XO-KOmoE-M9EyfGOl_RvqXkeYKfwCgW1nF</recordid><startdate>200406</startdate><enddate>200406</enddate><creator>Madsen, Kaj</creator><creator>Søndergaard, Jacob</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>200406</creationdate><title>Convergence of Hybrid Space Mapping Algorithms</title><author>Madsen, Kaj ; Søndergaard, Jacob</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-10e9c429e30397e0a8c80e98dc6dc313707877e11c3af9d3ac3a77bea805bf063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Mapping</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Preprocessing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Madsen, Kaj</creatorcontrib><creatorcontrib>Søndergaard, Jacob</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Optimization and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Madsen, Kaj</au><au>Søndergaard, Jacob</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence of Hybrid Space Mapping Algorithms</atitle><jtitle>Optimization and engineering</jtitle><date>2004-06</date><risdate>2004</risdate><volume>5</volume><issue>2</issue><spage>145</spage><epage>156</epage><pages>145-156</pages><issn>1389-4420</issn><eissn>1573-2924</eissn><abstract>The space mapping technique is intended for optimization of engineering models which involve very expensive function evaluations. It may be considered a preprocessing method which often provides a very efficient initial phase of an optimization procedure. However, the ultimate rate of convergence may be poor, or the method may even fail to converge to a stationary point. We consider a convex combination of the space mapping technique with a classical optimization technique. The function to be optimized has the form H [cir f where H : R super( )m arrow right R is convex and f : R super( )n arrow right R super( )mis smooth. Experience indicates that the combined method maintains the initial efficiency of the space mapping technique. We prove that the global convergence property of the classical technique is also maintained: The combined method provides convergence to the set of stationary points of H [cir f.</abstract><doi>10.1023/B:OPTE.0000033372.34626.49</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1389-4420
ispartof Optimization and engineering, 2004-06, Vol.5 (2), p.145-156
issn 1389-4420
1573-2924
language eng
recordid cdi_proquest_miscellaneous_919930562
source Springer Nature
subjects Algorithms
Convergence
Mapping
Mathematical models
Optimization
Preprocessing
title Convergence of Hybrid Space Mapping Algorithms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T12%3A30%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20of%20Hybrid%20Space%20Mapping%20Algorithms&rft.jtitle=Optimization%20and%20engineering&rft.au=Madsen,%20Kaj&rft.date=2004-06&rft.volume=5&rft.issue=2&rft.spage=145&rft.epage=156&rft.pages=145-156&rft.issn=1389-4420&rft.eissn=1573-2924&rft_id=info:doi/10.1023/B:OPTE.0000033372.34626.49&rft_dat=%3Cproquest_cross%3E919930562%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c225t-10e9c429e30397e0a8c80e98dc6dc313707877e11c3af9d3ac3a77bea805bf063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=919930562&rft_id=info:pmid/&rfr_iscdi=true