Loading…
Application of shape memory alloy wire actuator for precision position control of a composite beam
The design and experimental results of using a shape memory alloy (SMA) wire as an actuator for position control of a composite beam are presented. The composite beam is honeycomb structured, having wires of SMA embedded in one of its face sheets for the purposes of active actuation. Nickel-titanium...
Saved in:
Published in: | Journal of materials engineering and performance 2000-06, Vol.9 (3), p.330-333 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c394t-10c55af9d6e07daf75da288684598feecd76ec178a738acbc09258ae3de891373 |
---|---|
cites | |
container_end_page | 333 |
container_issue | 3 |
container_start_page | 330 |
container_title | Journal of materials engineering and performance |
container_volume | 9 |
creator | GANGBING SONG KELLY, B AGRAWAL, B. N LAM, P. C SRIVATSAN, T. S |
description | The design and experimental results of using a shape memory alloy (SMA) wire as an actuator for position control of a composite beam are presented. The composite beam is honeycomb structured, having wires of SMA embedded in one of its face sheets for the purposes of active actuation. Nickel-titanium SMA wires were chosen as actuating elements due to their high recovery stress (greater than 700 MPa) and tolerance to high strain (up to 8 percent). A simple proportional and derivative controller plus a feed-forward current is designed and implemented for controlling the tip position of the composite beam. Experiments have demonstrated the effectiveness of the SMA wire as an actuator for active position control of a composite beam. (Author) |
doi_str_mv | 10.1361/105994900770346006 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919932312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>919932312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-10c55af9d6e07daf75da288684598feecd76ec178a738acbc09258ae3de891373</originalsourceid><addsrcrecordid>eNqNkU1LxDAQhosouK7-AU9FQU_VfDbJcVn8ggUvei6z6RS7tE1NWmT_vemueFAQD0NmyPO-vMkkyTklN5Tn9JYSaYwwhChFuMgJyQ-SGZVCZJQwcRj7CGSRkMfJSQgbEknGxCxZL_q-qS0MtetSV6XhDXpMW2yd36bQNG6bftQeU7DDCIPzaRWr92jrMCl6F-qd1Lpu8K6ZLCAO7e4C0zVCe5ocVdAEPPs658nr_d3L8jFbPT88LRerzHIjhhjUSgmVKXMkqoRKyRKY1rkW0ugK0ZYqR0uVBsU12LUlhkkNyEvUhnLF58n13rf37n3EMBRtHSw2DXToxlAYagxnnLJIXv1JMpVLTST9Dyi0JDqCFz_AjRt9F59bMMZiOE0mN7aHrHcheKyK3tct-G1BSTGtsfi9xii6_HKGYKGpPHTx77-VmuaGMP4J89qcJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222373801</pqid></control><display><type>article</type><title>Application of shape memory alloy wire actuator for precision position control of a composite beam</title><source>Springer Nature</source><creator>GANGBING SONG ; KELLY, B ; AGRAWAL, B. N ; LAM, P. C ; SRIVATSAN, T. S</creator><creatorcontrib>GANGBING SONG ; KELLY, B ; AGRAWAL, B. N ; LAM, P. C ; SRIVATSAN, T. S</creatorcontrib><description>The design and experimental results of using a shape memory alloy (SMA) wire as an actuator for position control of a composite beam are presented. The composite beam is honeycomb structured, having wires of SMA embedded in one of its face sheets for the purposes of active actuation. Nickel-titanium SMA wires were chosen as actuating elements due to their high recovery stress (greater than 700 MPa) and tolerance to high strain (up to 8 percent). A simple proportional and derivative controller plus a feed-forward current is designed and implemented for controlling the tip position of the composite beam. Experiments have demonstrated the effectiveness of the SMA wire as an actuator for active position control of a composite beam. (Author)</description><identifier>ISSN: 1059-9495</identifier><identifier>EISSN: 1544-1024</identifier><identifier>DOI: 10.1361/105994900770346006</identifier><identifier>CODEN: JMEPEG</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>Active control ; Actuators ; Applied sciences ; Composite beams ; Cross-disciplinary physics: materials science; rheology ; Derivatives ; Exact sciences and technology ; Martensitic transformations ; Materials engineering ; Materials science ; Metals. Metallurgy ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Physics ; Shape memory alloys ; Tolerances ; Wire</subject><ispartof>Journal of materials engineering and performance, 2000-06, Vol.9 (3), p.330-333</ispartof><rights>2001 INIST-CNRS</rights><rights>Copyright ASM International Jun 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-10c55af9d6e07daf75da288684598feecd76ec178a738acbc09258ae3de891373</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27913,27914</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=816902$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GANGBING SONG</creatorcontrib><creatorcontrib>KELLY, B</creatorcontrib><creatorcontrib>AGRAWAL, B. N</creatorcontrib><creatorcontrib>LAM, P. C</creatorcontrib><creatorcontrib>SRIVATSAN, T. S</creatorcontrib><title>Application of shape memory alloy wire actuator for precision position control of a composite beam</title><title>Journal of materials engineering and performance</title><description>The design and experimental results of using a shape memory alloy (SMA) wire as an actuator for position control of a composite beam are presented. The composite beam is honeycomb structured, having wires of SMA embedded in one of its face sheets for the purposes of active actuation. Nickel-titanium SMA wires were chosen as actuating elements due to their high recovery stress (greater than 700 MPa) and tolerance to high strain (up to 8 percent). A simple proportional and derivative controller plus a feed-forward current is designed and implemented for controlling the tip position of the composite beam. Experiments have demonstrated the effectiveness of the SMA wire as an actuator for active position control of a composite beam. (Author)</description><subject>Active control</subject><subject>Actuators</subject><subject>Applied sciences</subject><subject>Composite beams</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Derivatives</subject><subject>Exact sciences and technology</subject><subject>Martensitic transformations</subject><subject>Materials engineering</subject><subject>Materials science</subject><subject>Metals. Metallurgy</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Physics</subject><subject>Shape memory alloys</subject><subject>Tolerances</subject><subject>Wire</subject><issn>1059-9495</issn><issn>1544-1024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqNkU1LxDAQhosouK7-AU9FQU_VfDbJcVn8ggUvei6z6RS7tE1NWmT_vemueFAQD0NmyPO-vMkkyTklN5Tn9JYSaYwwhChFuMgJyQ-SGZVCZJQwcRj7CGSRkMfJSQgbEknGxCxZL_q-qS0MtetSV6XhDXpMW2yd36bQNG6bftQeU7DDCIPzaRWr92jrMCl6F-qd1Lpu8K6ZLCAO7e4C0zVCe5ocVdAEPPs658nr_d3L8jFbPT88LRerzHIjhhjUSgmVKXMkqoRKyRKY1rkW0ugK0ZYqR0uVBsU12LUlhkkNyEvUhnLF58n13rf37n3EMBRtHSw2DXToxlAYagxnnLJIXv1JMpVLTST9Dyi0JDqCFz_AjRt9F59bMMZiOE0mN7aHrHcheKyK3tct-G1BSTGtsfi9xii6_HKGYKGpPHTx77-VmuaGMP4J89qcJQ</recordid><startdate>20000601</startdate><enddate>20000601</enddate><creator>GANGBING SONG</creator><creator>KELLY, B</creator><creator>AGRAWAL, B. N</creator><creator>LAM, P. C</creator><creator>SRIVATSAN, T. S</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20000601</creationdate><title>Application of shape memory alloy wire actuator for precision position control of a composite beam</title><author>GANGBING SONG ; KELLY, B ; AGRAWAL, B. N ; LAM, P. C ; SRIVATSAN, T. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-10c55af9d6e07daf75da288684598feecd76ec178a738acbc09258ae3de891373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Active control</topic><topic>Actuators</topic><topic>Applied sciences</topic><topic>Composite beams</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Derivatives</topic><topic>Exact sciences and technology</topic><topic>Martensitic transformations</topic><topic>Materials engineering</topic><topic>Materials science</topic><topic>Metals. Metallurgy</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Physics</topic><topic>Shape memory alloys</topic><topic>Tolerances</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GANGBING SONG</creatorcontrib><creatorcontrib>KELLY, B</creatorcontrib><creatorcontrib>AGRAWAL, B. N</creatorcontrib><creatorcontrib>LAM, P. C</creatorcontrib><creatorcontrib>SRIVATSAN, T. S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of materials engineering and performance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GANGBING SONG</au><au>KELLY, B</au><au>AGRAWAL, B. N</au><au>LAM, P. C</au><au>SRIVATSAN, T. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of shape memory alloy wire actuator for precision position control of a composite beam</atitle><jtitle>Journal of materials engineering and performance</jtitle><date>2000-06-01</date><risdate>2000</risdate><volume>9</volume><issue>3</issue><spage>330</spage><epage>333</epage><pages>330-333</pages><issn>1059-9495</issn><eissn>1544-1024</eissn><coden>JMEPEG</coden><abstract>The design and experimental results of using a shape memory alloy (SMA) wire as an actuator for position control of a composite beam are presented. The composite beam is honeycomb structured, having wires of SMA embedded in one of its face sheets for the purposes of active actuation. Nickel-titanium SMA wires were chosen as actuating elements due to their high recovery stress (greater than 700 MPa) and tolerance to high strain (up to 8 percent). A simple proportional and derivative controller plus a feed-forward current is designed and implemented for controlling the tip position of the composite beam. Experiments have demonstrated the effectiveness of the SMA wire as an actuator for active position control of a composite beam. (Author)</abstract><cop>New York, NY</cop><pub>Springer</pub><doi>10.1361/105994900770346006</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1059-9495 |
ispartof | Journal of materials engineering and performance, 2000-06, Vol.9 (3), p.330-333 |
issn | 1059-9495 1544-1024 |
language | eng |
recordid | cdi_proquest_miscellaneous_919932312 |
source | Springer Nature |
subjects | Active control Actuators Applied sciences Composite beams Cross-disciplinary physics: materials science rheology Derivatives Exact sciences and technology Martensitic transformations Materials engineering Materials science Metals. Metallurgy Phase diagrams and microstructures developed by solidification and solid-solid phase transformations Physics Shape memory alloys Tolerances Wire |
title | Application of shape memory alloy wire actuator for precision position control of a composite beam |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A07%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20shape%20memory%20alloy%20wire%20actuator%20for%20precision%20position%20control%20of%20a%20composite%20beam&rft.jtitle=Journal%20of%20materials%20engineering%20and%20performance&rft.au=GANGBING%20SONG&rft.date=2000-06-01&rft.volume=9&rft.issue=3&rft.spage=330&rft.epage=333&rft.pages=330-333&rft.issn=1059-9495&rft.eissn=1544-1024&rft.coden=JMEPEG&rft_id=info:doi/10.1361/105994900770346006&rft_dat=%3Cproquest_cross%3E919932312%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c394t-10c55af9d6e07daf75da288684598feecd76ec178a738acbc09258ae3de891373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=222373801&rft_id=info:pmid/&rfr_iscdi=true |