Loading…

Application of shape memory alloy wire actuator for precision position control of a composite beam

The design and experimental results of using a shape memory alloy (SMA) wire as an actuator for position control of a composite beam are presented. The composite beam is honeycomb structured, having wires of SMA embedded in one of its face sheets for the purposes of active actuation. Nickel-titanium...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials engineering and performance 2000-06, Vol.9 (3), p.330-333
Main Authors: GANGBING SONG, KELLY, B, AGRAWAL, B. N, LAM, P. C, SRIVATSAN, T. S
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c394t-10c55af9d6e07daf75da288684598feecd76ec178a738acbc09258ae3de891373
cites
container_end_page 333
container_issue 3
container_start_page 330
container_title Journal of materials engineering and performance
container_volume 9
creator GANGBING SONG
KELLY, B
AGRAWAL, B. N
LAM, P. C
SRIVATSAN, T. S
description The design and experimental results of using a shape memory alloy (SMA) wire as an actuator for position control of a composite beam are presented. The composite beam is honeycomb structured, having wires of SMA embedded in one of its face sheets for the purposes of active actuation. Nickel-titanium SMA wires were chosen as actuating elements due to their high recovery stress (greater than 700 MPa) and tolerance to high strain (up to 8 percent). A simple proportional and derivative controller plus a feed-forward current is designed and implemented for controlling the tip position of the composite beam. Experiments have demonstrated the effectiveness of the SMA wire as an actuator for active position control of a composite beam. (Author)
doi_str_mv 10.1361/105994900770346006
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919932312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>919932312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-10c55af9d6e07daf75da288684598feecd76ec178a738acbc09258ae3de891373</originalsourceid><addsrcrecordid>eNqNkU1LxDAQhosouK7-AU9FQU_VfDbJcVn8ggUvei6z6RS7tE1NWmT_vemueFAQD0NmyPO-vMkkyTklN5Tn9JYSaYwwhChFuMgJyQ-SGZVCZJQwcRj7CGSRkMfJSQgbEknGxCxZL_q-qS0MtetSV6XhDXpMW2yd36bQNG6bftQeU7DDCIPzaRWr92jrMCl6F-qd1Lpu8K6ZLCAO7e4C0zVCe5ocVdAEPPs658nr_d3L8jFbPT88LRerzHIjhhjUSgmVKXMkqoRKyRKY1rkW0ugK0ZYqR0uVBsU12LUlhkkNyEvUhnLF58n13rf37n3EMBRtHSw2DXToxlAYagxnnLJIXv1JMpVLTST9Dyi0JDqCFz_AjRt9F59bMMZiOE0mN7aHrHcheKyK3tct-G1BSTGtsfi9xii6_HKGYKGpPHTx77-VmuaGMP4J89qcJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222373801</pqid></control><display><type>article</type><title>Application of shape memory alloy wire actuator for precision position control of a composite beam</title><source>Springer Nature</source><creator>GANGBING SONG ; KELLY, B ; AGRAWAL, B. N ; LAM, P. C ; SRIVATSAN, T. S</creator><creatorcontrib>GANGBING SONG ; KELLY, B ; AGRAWAL, B. N ; LAM, P. C ; SRIVATSAN, T. S</creatorcontrib><description>The design and experimental results of using a shape memory alloy (SMA) wire as an actuator for position control of a composite beam are presented. The composite beam is honeycomb structured, having wires of SMA embedded in one of its face sheets for the purposes of active actuation. Nickel-titanium SMA wires were chosen as actuating elements due to their high recovery stress (greater than 700 MPa) and tolerance to high strain (up to 8 percent). A simple proportional and derivative controller plus a feed-forward current is designed and implemented for controlling the tip position of the composite beam. Experiments have demonstrated the effectiveness of the SMA wire as an actuator for active position control of a composite beam. (Author)</description><identifier>ISSN: 1059-9495</identifier><identifier>EISSN: 1544-1024</identifier><identifier>DOI: 10.1361/105994900770346006</identifier><identifier>CODEN: JMEPEG</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>Active control ; Actuators ; Applied sciences ; Composite beams ; Cross-disciplinary physics: materials science; rheology ; Derivatives ; Exact sciences and technology ; Martensitic transformations ; Materials engineering ; Materials science ; Metals. Metallurgy ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Physics ; Shape memory alloys ; Tolerances ; Wire</subject><ispartof>Journal of materials engineering and performance, 2000-06, Vol.9 (3), p.330-333</ispartof><rights>2001 INIST-CNRS</rights><rights>Copyright ASM International Jun 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-10c55af9d6e07daf75da288684598feecd76ec178a738acbc09258ae3de891373</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27913,27914</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=816902$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GANGBING SONG</creatorcontrib><creatorcontrib>KELLY, B</creatorcontrib><creatorcontrib>AGRAWAL, B. N</creatorcontrib><creatorcontrib>LAM, P. C</creatorcontrib><creatorcontrib>SRIVATSAN, T. S</creatorcontrib><title>Application of shape memory alloy wire actuator for precision position control of a composite beam</title><title>Journal of materials engineering and performance</title><description>The design and experimental results of using a shape memory alloy (SMA) wire as an actuator for position control of a composite beam are presented. The composite beam is honeycomb structured, having wires of SMA embedded in one of its face sheets for the purposes of active actuation. Nickel-titanium SMA wires were chosen as actuating elements due to their high recovery stress (greater than 700 MPa) and tolerance to high strain (up to 8 percent). A simple proportional and derivative controller plus a feed-forward current is designed and implemented for controlling the tip position of the composite beam. Experiments have demonstrated the effectiveness of the SMA wire as an actuator for active position control of a composite beam. (Author)</description><subject>Active control</subject><subject>Actuators</subject><subject>Applied sciences</subject><subject>Composite beams</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Derivatives</subject><subject>Exact sciences and technology</subject><subject>Martensitic transformations</subject><subject>Materials engineering</subject><subject>Materials science</subject><subject>Metals. Metallurgy</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Physics</subject><subject>Shape memory alloys</subject><subject>Tolerances</subject><subject>Wire</subject><issn>1059-9495</issn><issn>1544-1024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqNkU1LxDAQhosouK7-AU9FQU_VfDbJcVn8ggUvei6z6RS7tE1NWmT_vemueFAQD0NmyPO-vMkkyTklN5Tn9JYSaYwwhChFuMgJyQ-SGZVCZJQwcRj7CGSRkMfJSQgbEknGxCxZL_q-qS0MtetSV6XhDXpMW2yd36bQNG6bftQeU7DDCIPzaRWr92jrMCl6F-qd1Lpu8K6ZLCAO7e4C0zVCe5ocVdAEPPs658nr_d3L8jFbPT88LRerzHIjhhjUSgmVKXMkqoRKyRKY1rkW0ugK0ZYqR0uVBsU12LUlhkkNyEvUhnLF58n13rf37n3EMBRtHSw2DXToxlAYagxnnLJIXv1JMpVLTST9Dyi0JDqCFz_AjRt9F59bMMZiOE0mN7aHrHcheKyK3tct-G1BSTGtsfi9xii6_HKGYKGpPHTx77-VmuaGMP4J89qcJQ</recordid><startdate>20000601</startdate><enddate>20000601</enddate><creator>GANGBING SONG</creator><creator>KELLY, B</creator><creator>AGRAWAL, B. N</creator><creator>LAM, P. C</creator><creator>SRIVATSAN, T. S</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20000601</creationdate><title>Application of shape memory alloy wire actuator for precision position control of a composite beam</title><author>GANGBING SONG ; KELLY, B ; AGRAWAL, B. N ; LAM, P. C ; SRIVATSAN, T. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-10c55af9d6e07daf75da288684598feecd76ec178a738acbc09258ae3de891373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Active control</topic><topic>Actuators</topic><topic>Applied sciences</topic><topic>Composite beams</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Derivatives</topic><topic>Exact sciences and technology</topic><topic>Martensitic transformations</topic><topic>Materials engineering</topic><topic>Materials science</topic><topic>Metals. Metallurgy</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Physics</topic><topic>Shape memory alloys</topic><topic>Tolerances</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GANGBING SONG</creatorcontrib><creatorcontrib>KELLY, B</creatorcontrib><creatorcontrib>AGRAWAL, B. N</creatorcontrib><creatorcontrib>LAM, P. C</creatorcontrib><creatorcontrib>SRIVATSAN, T. S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of materials engineering and performance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GANGBING SONG</au><au>KELLY, B</au><au>AGRAWAL, B. N</au><au>LAM, P. C</au><au>SRIVATSAN, T. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of shape memory alloy wire actuator for precision position control of a composite beam</atitle><jtitle>Journal of materials engineering and performance</jtitle><date>2000-06-01</date><risdate>2000</risdate><volume>9</volume><issue>3</issue><spage>330</spage><epage>333</epage><pages>330-333</pages><issn>1059-9495</issn><eissn>1544-1024</eissn><coden>JMEPEG</coden><abstract>The design and experimental results of using a shape memory alloy (SMA) wire as an actuator for position control of a composite beam are presented. The composite beam is honeycomb structured, having wires of SMA embedded in one of its face sheets for the purposes of active actuation. Nickel-titanium SMA wires were chosen as actuating elements due to their high recovery stress (greater than 700 MPa) and tolerance to high strain (up to 8 percent). A simple proportional and derivative controller plus a feed-forward current is designed and implemented for controlling the tip position of the composite beam. Experiments have demonstrated the effectiveness of the SMA wire as an actuator for active position control of a composite beam. (Author)</abstract><cop>New York, NY</cop><pub>Springer</pub><doi>10.1361/105994900770346006</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1059-9495
ispartof Journal of materials engineering and performance, 2000-06, Vol.9 (3), p.330-333
issn 1059-9495
1544-1024
language eng
recordid cdi_proquest_miscellaneous_919932312
source Springer Nature
subjects Active control
Actuators
Applied sciences
Composite beams
Cross-disciplinary physics: materials science
rheology
Derivatives
Exact sciences and technology
Martensitic transformations
Materials engineering
Materials science
Metals. Metallurgy
Phase diagrams and microstructures developed by solidification and solid-solid phase transformations
Physics
Shape memory alloys
Tolerances
Wire
title Application of shape memory alloy wire actuator for precision position control of a composite beam
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A07%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20shape%20memory%20alloy%20wire%20actuator%20for%20precision%20position%20control%20of%20a%20composite%20beam&rft.jtitle=Journal%20of%20materials%20engineering%20and%20performance&rft.au=GANGBING%20SONG&rft.date=2000-06-01&rft.volume=9&rft.issue=3&rft.spage=330&rft.epage=333&rft.pages=330-333&rft.issn=1059-9495&rft.eissn=1544-1024&rft.coden=JMEPEG&rft_id=info:doi/10.1361/105994900770346006&rft_dat=%3Cproquest_cross%3E919932312%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c394t-10c55af9d6e07daf75da288684598feecd76ec178a738acbc09258ae3de891373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=222373801&rft_id=info:pmid/&rfr_iscdi=true