Loading…

Fast algorithms for single frequency estimation

In this paper, some new estimators of the frequency of a single complex sinusoid are presented. The rotate-add-decimate (RAD) method of Crozier is first refined to more closely approach the Cramer-Rao Bound (CRB). An additional modification yields an unbiased estimator (ERAD) that essentially achiev...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2006-05, Vol.54 (5), p.1762-1770
Main Author: Klein, J.D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c381t-1c72fae25cbeec349dc2546da1c4ff02505aa09ef87fa2c7038172b8dda504b73
cites cdi_FETCH-LOGICAL-c381t-1c72fae25cbeec349dc2546da1c4ff02505aa09ef87fa2c7038172b8dda504b73
container_end_page 1770
container_issue 5
container_start_page 1762
container_title IEEE transactions on signal processing
container_volume 54
creator Klein, J.D.
description In this paper, some new estimators of the frequency of a single complex sinusoid are presented. The rotate-add-decimate (RAD) method of Crozier is first refined to more closely approach the Cramer-Rao Bound (CRB). An additional modification yields an unbiased estimator (ERAD) that essentially achieves the CRB above a signal-to-noise ratio (SNR) threshold comparable to that of RAD. In addition, this estimator is proven to achieve the CRB for high SNR. The ERAD method requires approximately 2N complex multiply-adds and log/sub 2/N arctangents. A modified ERAD (MERAD) is proposed that matches the SNR threshold and computational complexity of the RAD method (approximately 3N complex multiply-adds and log/sub 2/N arctangents) but achieves the CRB for high SNR.
doi_str_mv 10.1109/TSP.2006.870549
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_919933752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1621405</ieee_id><sourcerecordid>28032215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-1c72fae25cbeec349dc2546da1c4ff02505aa09ef87fa2c7038172b8dda504b73</originalsourceid><addsrcrecordid>eNp9kc1LAzEQxRdRsFbPHrwsgnradvKdHKVYFQoKVvAW0mxSt2x3a7I99L83ZQsFD55mYH5vmPcmy64RjBACNZ5_vI8wAB9JAYyqk2yAFEUFUMFPUw-MFEyKr_PsIsYVAKJU8UE2nprY5aZetqHqvtcx923IY9Usa5f74H62rrG73MWuWpuuapvL7MybOrqrQx1mn9On-eSlmL09v04eZ4UlEnUFsgJ74zCzC-csoaq0mFFeGmSp94AZMGNAOS-FN9gKSCqBF7IsDQO6EGSYPfR7N6FNR8ROr6toXV2bxrXbqBVSihDBcCLv_yWxBIIxYgm8_QOu2m1okgstOedKEsETNO4hG9oYg_N6E5L1sNMI9D5nnXLW-5x1n3NS3B3WmmhN7YNpbBWPMiEIBkETd9NzlXPuOOYY0fSbX982hRI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>866698376</pqid></control><display><type>article</type><title>Fast algorithms for single frequency estimation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Klein, J.D.</creator><creatorcontrib>Klein, J.D.</creatorcontrib><description>In this paper, some new estimators of the frequency of a single complex sinusoid are presented. The rotate-add-decimate (RAD) method of Crozier is first refined to more closely approach the Cramer-Rao Bound (CRB). An additional modification yields an unbiased estimator (ERAD) that essentially achieves the CRB above a signal-to-noise ratio (SNR) threshold comparable to that of RAD. In addition, this estimator is proven to achieve the CRB for high SNR. The ERAD method requires approximately 2N complex multiply-adds and log/sub 2/N arctangents. A modified ERAD (MERAD) is proposed that matches the SNR threshold and computational complexity of the RAD method (approximately 3N complex multiply-adds and log/sub 2/N arctangents) but achieves the CRB for high SNR.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2006.870549</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Complexity ; Computation ; Computational complexity ; Context ; Cramer-Rao bounds ; Detection, estimation, filtering, equalization, prediction ; Discrete Fourier transforms ; Estimators ; Exact sciences and technology ; Frequency estimation ; Information, signal and communications theory ; Maximum likelihood estimation ; Radar signal processing ; Signal and communications theory ; Signal processing ; Signal processing algorithms ; Signal to noise ratio ; Signal, noise ; single sinusoid ; Telecommunications and information theory ; Thresholds ; Yield estimation</subject><ispartof>IEEE transactions on signal processing, 2006-05, Vol.54 (5), p.1762-1770</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-1c72fae25cbeec349dc2546da1c4ff02505aa09ef87fa2c7038172b8dda504b73</citedby><cites>FETCH-LOGICAL-c381t-1c72fae25cbeec349dc2546da1c4ff02505aa09ef87fa2c7038172b8dda504b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1621405$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17732074$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Klein, J.D.</creatorcontrib><title>Fast algorithms for single frequency estimation</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In this paper, some new estimators of the frequency of a single complex sinusoid are presented. The rotate-add-decimate (RAD) method of Crozier is first refined to more closely approach the Cramer-Rao Bound (CRB). An additional modification yields an unbiased estimator (ERAD) that essentially achieves the CRB above a signal-to-noise ratio (SNR) threshold comparable to that of RAD. In addition, this estimator is proven to achieve the CRB for high SNR. The ERAD method requires approximately 2N complex multiply-adds and log/sub 2/N arctangents. A modified ERAD (MERAD) is proposed that matches the SNR threshold and computational complexity of the RAD method (approximately 3N complex multiply-adds and log/sub 2/N arctangents) but achieves the CRB for high SNR.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Complexity</subject><subject>Computation</subject><subject>Computational complexity</subject><subject>Context</subject><subject>Cramer-Rao bounds</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Discrete Fourier transforms</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Frequency estimation</subject><subject>Information, signal and communications theory</subject><subject>Maximum likelihood estimation</subject><subject>Radar signal processing</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Signal to noise ratio</subject><subject>Signal, noise</subject><subject>single sinusoid</subject><subject>Telecommunications and information theory</subject><subject>Thresholds</subject><subject>Yield estimation</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kc1LAzEQxRdRsFbPHrwsgnradvKdHKVYFQoKVvAW0mxSt2x3a7I99L83ZQsFD55mYH5vmPcmy64RjBACNZ5_vI8wAB9JAYyqk2yAFEUFUMFPUw-MFEyKr_PsIsYVAKJU8UE2nprY5aZetqHqvtcx923IY9Usa5f74H62rrG73MWuWpuuapvL7MybOrqrQx1mn9On-eSlmL09v04eZ4UlEnUFsgJ74zCzC-csoaq0mFFeGmSp94AZMGNAOS-FN9gKSCqBF7IsDQO6EGSYPfR7N6FNR8ROr6toXV2bxrXbqBVSihDBcCLv_yWxBIIxYgm8_QOu2m1okgstOedKEsETNO4hG9oYg_N6E5L1sNMI9D5nnXLW-5x1n3NS3B3WmmhN7YNpbBWPMiEIBkETd9NzlXPuOOYY0fSbX982hRI</recordid><startdate>20060501</startdate><enddate>20060501</enddate><creator>Klein, J.D.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060501</creationdate><title>Fast algorithms for single frequency estimation</title><author>Klein, J.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-1c72fae25cbeec349dc2546da1c4ff02505aa09ef87fa2c7038172b8dda504b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Complexity</topic><topic>Computation</topic><topic>Computational complexity</topic><topic>Context</topic><topic>Cramer-Rao bounds</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Discrete Fourier transforms</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Frequency estimation</topic><topic>Information, signal and communications theory</topic><topic>Maximum likelihood estimation</topic><topic>Radar signal processing</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Signal to noise ratio</topic><topic>Signal, noise</topic><topic>single sinusoid</topic><topic>Telecommunications and information theory</topic><topic>Thresholds</topic><topic>Yield estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klein, J.D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klein, J.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast algorithms for single frequency estimation</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2006-05-01</date><risdate>2006</risdate><volume>54</volume><issue>5</issue><spage>1762</spage><epage>1770</epage><pages>1762-1770</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In this paper, some new estimators of the frequency of a single complex sinusoid are presented. The rotate-add-decimate (RAD) method of Crozier is first refined to more closely approach the Cramer-Rao Bound (CRB). An additional modification yields an unbiased estimator (ERAD) that essentially achieves the CRB above a signal-to-noise ratio (SNR) threshold comparable to that of RAD. In addition, this estimator is proven to achieve the CRB for high SNR. The ERAD method requires approximately 2N complex multiply-adds and log/sub 2/N arctangents. A modified ERAD (MERAD) is proposed that matches the SNR threshold and computational complexity of the RAD method (approximately 3N complex multiply-adds and log/sub 2/N arctangents) but achieves the CRB for high SNR.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2006.870549</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2006-05, Vol.54 (5), p.1762-1770
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_miscellaneous_919933752
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Applied sciences
Complexity
Computation
Computational complexity
Context
Cramer-Rao bounds
Detection, estimation, filtering, equalization, prediction
Discrete Fourier transforms
Estimators
Exact sciences and technology
Frequency estimation
Information, signal and communications theory
Maximum likelihood estimation
Radar signal processing
Signal and communications theory
Signal processing
Signal processing algorithms
Signal to noise ratio
Signal, noise
single sinusoid
Telecommunications and information theory
Thresholds
Yield estimation
title Fast algorithms for single frequency estimation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A14%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20algorithms%20for%20single%20frequency%20estimation&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Klein,%20J.D.&rft.date=2006-05-01&rft.volume=54&rft.issue=5&rft.spage=1762&rft.epage=1770&rft.pages=1762-1770&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2006.870549&rft_dat=%3Cproquest_ieee_%3E28032215%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c381t-1c72fae25cbeec349dc2546da1c4ff02505aa09ef87fa2c7038172b8dda504b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=866698376&rft_id=info:pmid/&rft_ieee_id=1621405&rfr_iscdi=true