Loading…
Fast algorithms for single frequency estimation
In this paper, some new estimators of the frequency of a single complex sinusoid are presented. The rotate-add-decimate (RAD) method of Crozier is first refined to more closely approach the Cramer-Rao Bound (CRB). An additional modification yields an unbiased estimator (ERAD) that essentially achiev...
Saved in:
Published in: | IEEE transactions on signal processing 2006-05, Vol.54 (5), p.1762-1770 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c381t-1c72fae25cbeec349dc2546da1c4ff02505aa09ef87fa2c7038172b8dda504b73 |
---|---|
cites | cdi_FETCH-LOGICAL-c381t-1c72fae25cbeec349dc2546da1c4ff02505aa09ef87fa2c7038172b8dda504b73 |
container_end_page | 1770 |
container_issue | 5 |
container_start_page | 1762 |
container_title | IEEE transactions on signal processing |
container_volume | 54 |
creator | Klein, J.D. |
description | In this paper, some new estimators of the frequency of a single complex sinusoid are presented. The rotate-add-decimate (RAD) method of Crozier is first refined to more closely approach the Cramer-Rao Bound (CRB). An additional modification yields an unbiased estimator (ERAD) that essentially achieves the CRB above a signal-to-noise ratio (SNR) threshold comparable to that of RAD. In addition, this estimator is proven to achieve the CRB for high SNR. The ERAD method requires approximately 2N complex multiply-adds and log/sub 2/N arctangents. A modified ERAD (MERAD) is proposed that matches the SNR threshold and computational complexity of the RAD method (approximately 3N complex multiply-adds and log/sub 2/N arctangents) but achieves the CRB for high SNR. |
doi_str_mv | 10.1109/TSP.2006.870549 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_919933752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1621405</ieee_id><sourcerecordid>28032215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-1c72fae25cbeec349dc2546da1c4ff02505aa09ef87fa2c7038172b8dda504b73</originalsourceid><addsrcrecordid>eNp9kc1LAzEQxRdRsFbPHrwsgnradvKdHKVYFQoKVvAW0mxSt2x3a7I99L83ZQsFD55mYH5vmPcmy64RjBACNZ5_vI8wAB9JAYyqk2yAFEUFUMFPUw-MFEyKr_PsIsYVAKJU8UE2nprY5aZetqHqvtcx923IY9Usa5f74H62rrG73MWuWpuuapvL7MybOrqrQx1mn9On-eSlmL09v04eZ4UlEnUFsgJ74zCzC-csoaq0mFFeGmSp94AZMGNAOS-FN9gKSCqBF7IsDQO6EGSYPfR7N6FNR8ROr6toXV2bxrXbqBVSihDBcCLv_yWxBIIxYgm8_QOu2m1okgstOedKEsETNO4hG9oYg_N6E5L1sNMI9D5nnXLW-5x1n3NS3B3WmmhN7YNpbBWPMiEIBkETd9NzlXPuOOYY0fSbX982hRI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>866698376</pqid></control><display><type>article</type><title>Fast algorithms for single frequency estimation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Klein, J.D.</creator><creatorcontrib>Klein, J.D.</creatorcontrib><description>In this paper, some new estimators of the frequency of a single complex sinusoid are presented. The rotate-add-decimate (RAD) method of Crozier is first refined to more closely approach the Cramer-Rao Bound (CRB). An additional modification yields an unbiased estimator (ERAD) that essentially achieves the CRB above a signal-to-noise ratio (SNR) threshold comparable to that of RAD. In addition, this estimator is proven to achieve the CRB for high SNR. The ERAD method requires approximately 2N complex multiply-adds and log/sub 2/N arctangents. A modified ERAD (MERAD) is proposed that matches the SNR threshold and computational complexity of the RAD method (approximately 3N complex multiply-adds and log/sub 2/N arctangents) but achieves the CRB for high SNR.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2006.870549</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Complexity ; Computation ; Computational complexity ; Context ; Cramer-Rao bounds ; Detection, estimation, filtering, equalization, prediction ; Discrete Fourier transforms ; Estimators ; Exact sciences and technology ; Frequency estimation ; Information, signal and communications theory ; Maximum likelihood estimation ; Radar signal processing ; Signal and communications theory ; Signal processing ; Signal processing algorithms ; Signal to noise ratio ; Signal, noise ; single sinusoid ; Telecommunications and information theory ; Thresholds ; Yield estimation</subject><ispartof>IEEE transactions on signal processing, 2006-05, Vol.54 (5), p.1762-1770</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-1c72fae25cbeec349dc2546da1c4ff02505aa09ef87fa2c7038172b8dda504b73</citedby><cites>FETCH-LOGICAL-c381t-1c72fae25cbeec349dc2546da1c4ff02505aa09ef87fa2c7038172b8dda504b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1621405$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17732074$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Klein, J.D.</creatorcontrib><title>Fast algorithms for single frequency estimation</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In this paper, some new estimators of the frequency of a single complex sinusoid are presented. The rotate-add-decimate (RAD) method of Crozier is first refined to more closely approach the Cramer-Rao Bound (CRB). An additional modification yields an unbiased estimator (ERAD) that essentially achieves the CRB above a signal-to-noise ratio (SNR) threshold comparable to that of RAD. In addition, this estimator is proven to achieve the CRB for high SNR. The ERAD method requires approximately 2N complex multiply-adds and log/sub 2/N arctangents. A modified ERAD (MERAD) is proposed that matches the SNR threshold and computational complexity of the RAD method (approximately 3N complex multiply-adds and log/sub 2/N arctangents) but achieves the CRB for high SNR.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Complexity</subject><subject>Computation</subject><subject>Computational complexity</subject><subject>Context</subject><subject>Cramer-Rao bounds</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Discrete Fourier transforms</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Frequency estimation</subject><subject>Information, signal and communications theory</subject><subject>Maximum likelihood estimation</subject><subject>Radar signal processing</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Signal to noise ratio</subject><subject>Signal, noise</subject><subject>single sinusoid</subject><subject>Telecommunications and information theory</subject><subject>Thresholds</subject><subject>Yield estimation</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kc1LAzEQxRdRsFbPHrwsgnradvKdHKVYFQoKVvAW0mxSt2x3a7I99L83ZQsFD55mYH5vmPcmy64RjBACNZ5_vI8wAB9JAYyqk2yAFEUFUMFPUw-MFEyKr_PsIsYVAKJU8UE2nprY5aZetqHqvtcx923IY9Usa5f74H62rrG73MWuWpuuapvL7MybOrqrQx1mn9On-eSlmL09v04eZ4UlEnUFsgJ74zCzC-csoaq0mFFeGmSp94AZMGNAOS-FN9gKSCqBF7IsDQO6EGSYPfR7N6FNR8ROr6toXV2bxrXbqBVSihDBcCLv_yWxBIIxYgm8_QOu2m1okgstOedKEsETNO4hG9oYg_N6E5L1sNMI9D5nnXLW-5x1n3NS3B3WmmhN7YNpbBWPMiEIBkETd9NzlXPuOOYY0fSbX982hRI</recordid><startdate>20060501</startdate><enddate>20060501</enddate><creator>Klein, J.D.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060501</creationdate><title>Fast algorithms for single frequency estimation</title><author>Klein, J.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-1c72fae25cbeec349dc2546da1c4ff02505aa09ef87fa2c7038172b8dda504b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Complexity</topic><topic>Computation</topic><topic>Computational complexity</topic><topic>Context</topic><topic>Cramer-Rao bounds</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Discrete Fourier transforms</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Frequency estimation</topic><topic>Information, signal and communications theory</topic><topic>Maximum likelihood estimation</topic><topic>Radar signal processing</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Signal to noise ratio</topic><topic>Signal, noise</topic><topic>single sinusoid</topic><topic>Telecommunications and information theory</topic><topic>Thresholds</topic><topic>Yield estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klein, J.D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klein, J.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast algorithms for single frequency estimation</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2006-05-01</date><risdate>2006</risdate><volume>54</volume><issue>5</issue><spage>1762</spage><epage>1770</epage><pages>1762-1770</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In this paper, some new estimators of the frequency of a single complex sinusoid are presented. The rotate-add-decimate (RAD) method of Crozier is first refined to more closely approach the Cramer-Rao Bound (CRB). An additional modification yields an unbiased estimator (ERAD) that essentially achieves the CRB above a signal-to-noise ratio (SNR) threshold comparable to that of RAD. In addition, this estimator is proven to achieve the CRB for high SNR. The ERAD method requires approximately 2N complex multiply-adds and log/sub 2/N arctangents. A modified ERAD (MERAD) is proposed that matches the SNR threshold and computational complexity of the RAD method (approximately 3N complex multiply-adds and log/sub 2/N arctangents) but achieves the CRB for high SNR.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2006.870549</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2006-05, Vol.54 (5), p.1762-1770 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_proquest_miscellaneous_919933752 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Applied sciences Complexity Computation Computational complexity Context Cramer-Rao bounds Detection, estimation, filtering, equalization, prediction Discrete Fourier transforms Estimators Exact sciences and technology Frequency estimation Information, signal and communications theory Maximum likelihood estimation Radar signal processing Signal and communications theory Signal processing Signal processing algorithms Signal to noise ratio Signal, noise single sinusoid Telecommunications and information theory Thresholds Yield estimation |
title | Fast algorithms for single frequency estimation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A14%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20algorithms%20for%20single%20frequency%20estimation&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Klein,%20J.D.&rft.date=2006-05-01&rft.volume=54&rft.issue=5&rft.spage=1762&rft.epage=1770&rft.pages=1762-1770&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2006.870549&rft_dat=%3Cproquest_ieee_%3E28032215%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c381t-1c72fae25cbeec349dc2546da1c4ff02505aa09ef87fa2c7038172b8dda504b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=866698376&rft_id=info:pmid/&rft_ieee_id=1621405&rfr_iscdi=true |