Loading…
Real-world applications of analog and digital evolvable hardware
In contrast to conventional hardware where the structure is irreversibly fixed in the design process, evolvable hardware (EHW) is designed to adapt to changes in task requirements or changes in the environment, through its ability to reconfigure its own hardware structure dynamically and autonomousl...
Saved in:
Published in: | IEEE transactions on evolutionary computation 1999-09, Vol.3 (3), p.220-235 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In contrast to conventional hardware where the structure is irreversibly fixed in the design process, evolvable hardware (EHW) is designed to adapt to changes in task requirements or changes in the environment, through its ability to reconfigure its own hardware structure dynamically and autonomously. This capacity for adaptation, achieved by employing efficient search algorithms based on the metaphor of evolution, has great potential for the development of innovative industrial applications. This paper introduces EHW chips and six applications currently being developed as part of MITI's Real-World Computing Project; an analog EHW chip for cellular phones, a clock-timing architecture for Giga hertz systems, a neural network EHW chip capable of autonomous reconfiguration, a data compression EHW chip for electrophotographic printers, and a gate-level EHW chip for use in prosthetic hands and robot navigation. |
---|---|
ISSN: | 1089-778X 1941-0026 |
DOI: | 10.1109/4235.788492 |