Loading…

Is there switching for replicator dynamics and bimatrix games?

We consider heteroclinic networks for replicator dynamics and bimatrix games, that is, in a simplex or product of simplices, with equilibria at the vertices and connections at the edges–edge networks. Switching dynamics near a heteroclinic network occurs whenever every (infinite) sequence of connect...

Full description

Saved in:
Bibliographic Details
Published in:Physica. D 2011-09, Vol.240 (18), p.1475-1488
Main Author: Aguiar, Manuela A.D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c365t-615c756a6fe6a7e848c19775d0a1735d6962e15aeb789f9d9ab240d51df4d57b3
cites cdi_FETCH-LOGICAL-c365t-615c756a6fe6a7e848c19775d0a1735d6962e15aeb789f9d9ab240d51df4d57b3
container_end_page 1488
container_issue 18
container_start_page 1475
container_title Physica. D
container_volume 240
creator Aguiar, Manuela A.D.
description We consider heteroclinic networks for replicator dynamics and bimatrix games, that is, in a simplex or product of simplices, with equilibria at the vertices and connections at the edges–edge networks. Switching dynamics near a heteroclinic network occurs whenever every (infinite) sequence of connections in the network is shadowed by at least one trajectory in its neighborhood. Aguiar and Castro [M.A.D. Aguiar, S.B.S.D. Castro Chaotic switching in a two-person game, Physica D 239 (16), 1598–1609] prove switching near an edge network for the dynamics of the rock–scissors–paper game. Here we give conditions for switching dynamics in general bimatrix games and show that switching near an edge network can never occur for replicator dynamics. ► We consider edge heteroclinic networks for replicator dynamics and bimatrix games. ► We study the existence of switching near such networks. ► We prove that there is no switching in replicator dynamics. ► We give conditions for switching dynamics in bimatrix games. ► The mechanism for switching is conservative dynamics and no Kirk & Silber subnetwork.
doi_str_mv 10.1016/j.physd.2011.06.016
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919937114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167278911001655</els_id><sourcerecordid>919937114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-615c756a6fe6a7e848c19775d0a1735d6962e15aeb789f9d9ab240d51df4d57b3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIXcMkFcUqwndiOD4BQxaNSJS5wthx707rKCzsF-ve4tOLIaVejmdnZQeiS4Ixgwm_W2bDaBptRTEiGeRaxIzQhpaBpiSk9RpOIiJSKUp6isxDWGGMicjFBd_OQjCvwkIQvN5qV65ZJ3fvEw9A4o8e42m2nW2dCojubVK7Vo3ffyVK3EO7P0UmtmwAXhzlF70-Pb7OXdPH6PJ89LFKTczamnDAjGNe8Bq4FlEVpiBSCWaxjDGa55BQI01DFhLW0Ule0wJYRWxeWiSqfouu97-D7jw2EUbUuGGga3UG_CUoSKXNBSBGZ-Z5pfB-Ch1oNPmb2W0Ww2pWl1uq3LLUrS2GuIhZVVwd_HYxuaq8748KflBZFzmmOI-92z4P47KcDr4Jx0BmwzoMZle3dv3d-APT0gF8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919937114</pqid></control><display><type>article</type><title>Is there switching for replicator dynamics and bimatrix games?</title><source>Elsevier</source><creator>Aguiar, Manuela A.D.</creator><creatorcontrib>Aguiar, Manuela A.D.</creatorcontrib><description>We consider heteroclinic networks for replicator dynamics and bimatrix games, that is, in a simplex or product of simplices, with equilibria at the vertices and connections at the edges–edge networks. Switching dynamics near a heteroclinic network occurs whenever every (infinite) sequence of connections in the network is shadowed by at least one trajectory in its neighborhood. Aguiar and Castro [M.A.D. Aguiar, S.B.S.D. Castro Chaotic switching in a two-person game, Physica D 239 (16), 1598–1609] prove switching near an edge network for the dynamics of the rock–scissors–paper game. Here we give conditions for switching dynamics in general bimatrix games and show that switching near an edge network can never occur for replicator dynamics. ► We consider edge heteroclinic networks for replicator dynamics and bimatrix games. ► We study the existence of switching near such networks. ► We prove that there is no switching in replicator dynamics. ► We give conditions for switching dynamics in bimatrix games. ► The mechanism for switching is conservative dynamics and no Kirk &amp; Silber subnetwork.</description><identifier>ISSN: 0167-2789</identifier><identifier>EISSN: 1872-8022</identifier><identifier>DOI: 10.1016/j.physd.2011.06.016</identifier><identifier>CODEN: PDNPDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Divergence-free vector field ; Dynamics ; Evolutionary dynamics ; Exact sciences and technology ; Games ; Heteroclinic network ; Joints ; Networks ; Nonlinear dynamics ; Physics ; Switching ; Switching dynamics ; Switching theory ; Trajectories</subject><ispartof>Physica. D, 2011-09, Vol.240 (18), p.1475-1488</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-615c756a6fe6a7e848c19775d0a1735d6962e15aeb789f9d9ab240d51df4d57b3</citedby><cites>FETCH-LOGICAL-c365t-615c756a6fe6a7e848c19775d0a1735d6962e15aeb789f9d9ab240d51df4d57b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24436230$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Aguiar, Manuela A.D.</creatorcontrib><title>Is there switching for replicator dynamics and bimatrix games?</title><title>Physica. D</title><description>We consider heteroclinic networks for replicator dynamics and bimatrix games, that is, in a simplex or product of simplices, with equilibria at the vertices and connections at the edges–edge networks. Switching dynamics near a heteroclinic network occurs whenever every (infinite) sequence of connections in the network is shadowed by at least one trajectory in its neighborhood. Aguiar and Castro [M.A.D. Aguiar, S.B.S.D. Castro Chaotic switching in a two-person game, Physica D 239 (16), 1598–1609] prove switching near an edge network for the dynamics of the rock–scissors–paper game. Here we give conditions for switching dynamics in general bimatrix games and show that switching near an edge network can never occur for replicator dynamics. ► We consider edge heteroclinic networks for replicator dynamics and bimatrix games. ► We study the existence of switching near such networks. ► We prove that there is no switching in replicator dynamics. ► We give conditions for switching dynamics in bimatrix games. ► The mechanism for switching is conservative dynamics and no Kirk &amp; Silber subnetwork.</description><subject>Divergence-free vector field</subject><subject>Dynamics</subject><subject>Evolutionary dynamics</subject><subject>Exact sciences and technology</subject><subject>Games</subject><subject>Heteroclinic network</subject><subject>Joints</subject><subject>Networks</subject><subject>Nonlinear dynamics</subject><subject>Physics</subject><subject>Switching</subject><subject>Switching dynamics</subject><subject>Switching theory</subject><subject>Trajectories</subject><issn>0167-2789</issn><issn>1872-8022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIXcMkFcUqwndiOD4BQxaNSJS5wthx707rKCzsF-ve4tOLIaVejmdnZQeiS4Ixgwm_W2bDaBptRTEiGeRaxIzQhpaBpiSk9RpOIiJSKUp6isxDWGGMicjFBd_OQjCvwkIQvN5qV65ZJ3fvEw9A4o8e42m2nW2dCojubVK7Vo3ffyVK3EO7P0UmtmwAXhzlF70-Pb7OXdPH6PJ89LFKTczamnDAjGNe8Bq4FlEVpiBSCWaxjDGa55BQI01DFhLW0Ule0wJYRWxeWiSqfouu97-D7jw2EUbUuGGga3UG_CUoSKXNBSBGZ-Z5pfB-Ch1oNPmb2W0Ww2pWl1uq3LLUrS2GuIhZVVwd_HYxuaq8748KflBZFzmmOI-92z4P47KcDr4Jx0BmwzoMZle3dv3d-APT0gF8</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Aguiar, Manuela A.D.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20110901</creationdate><title>Is there switching for replicator dynamics and bimatrix games?</title><author>Aguiar, Manuela A.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-615c756a6fe6a7e848c19775d0a1735d6962e15aeb789f9d9ab240d51df4d57b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Divergence-free vector field</topic><topic>Dynamics</topic><topic>Evolutionary dynamics</topic><topic>Exact sciences and technology</topic><topic>Games</topic><topic>Heteroclinic network</topic><topic>Joints</topic><topic>Networks</topic><topic>Nonlinear dynamics</topic><topic>Physics</topic><topic>Switching</topic><topic>Switching dynamics</topic><topic>Switching theory</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aguiar, Manuela A.D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aguiar, Manuela A.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Is there switching for replicator dynamics and bimatrix games?</atitle><jtitle>Physica. D</jtitle><date>2011-09-01</date><risdate>2011</risdate><volume>240</volume><issue>18</issue><spage>1475</spage><epage>1488</epage><pages>1475-1488</pages><issn>0167-2789</issn><eissn>1872-8022</eissn><coden>PDNPDT</coden><abstract>We consider heteroclinic networks for replicator dynamics and bimatrix games, that is, in a simplex or product of simplices, with equilibria at the vertices and connections at the edges–edge networks. Switching dynamics near a heteroclinic network occurs whenever every (infinite) sequence of connections in the network is shadowed by at least one trajectory in its neighborhood. Aguiar and Castro [M.A.D. Aguiar, S.B.S.D. Castro Chaotic switching in a two-person game, Physica D 239 (16), 1598–1609] prove switching near an edge network for the dynamics of the rock–scissors–paper game. Here we give conditions for switching dynamics in general bimatrix games and show that switching near an edge network can never occur for replicator dynamics. ► We consider edge heteroclinic networks for replicator dynamics and bimatrix games. ► We study the existence of switching near such networks. ► We prove that there is no switching in replicator dynamics. ► We give conditions for switching dynamics in bimatrix games. ► The mechanism for switching is conservative dynamics and no Kirk &amp; Silber subnetwork.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.physd.2011.06.016</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-2789
ispartof Physica. D, 2011-09, Vol.240 (18), p.1475-1488
issn 0167-2789
1872-8022
language eng
recordid cdi_proquest_miscellaneous_919937114
source Elsevier
subjects Divergence-free vector field
Dynamics
Evolutionary dynamics
Exact sciences and technology
Games
Heteroclinic network
Joints
Networks
Nonlinear dynamics
Physics
Switching
Switching dynamics
Switching theory
Trajectories
title Is there switching for replicator dynamics and bimatrix games?
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A03%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Is%20there%20switching%20for%20replicator%20dynamics%20and%20bimatrix%20games?&rft.jtitle=Physica.%20D&rft.au=Aguiar,%20Manuela%20A.D.&rft.date=2011-09-01&rft.volume=240&rft.issue=18&rft.spage=1475&rft.epage=1488&rft.pages=1475-1488&rft.issn=0167-2789&rft.eissn=1872-8022&rft.coden=PDNPDT&rft_id=info:doi/10.1016/j.physd.2011.06.016&rft_dat=%3Cproquest_cross%3E919937114%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-615c756a6fe6a7e848c19775d0a1735d6962e15aeb789f9d9ab240d51df4d57b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=919937114&rft_id=info:pmid/&rfr_iscdi=true