Loading…
Simultaneous profiling of lysophospholipids and phospholipids from human plasma by nanoflow liquid chromatography-tandem mass spectrometry
In this study, an analytical method for the simultaneous separation and characterization of various molecular species of lysophospholipids (LPLs) and phospholipids (PLs) is introduced by employing nanoflow liquid chromatography-electrospray ionization tandem mass spectrometry (nLC-ESI-MS/MS). Since...
Saved in:
Published in: | Analytical and bioanalytical chemistry 2011-07, Vol.400 (9), p.2953-2961 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, an analytical method for the simultaneous separation and characterization of various molecular species of lysophospholipids (LPLs) and phospholipids (PLs) is introduced by employing nanoflow liquid chromatography-electrospray ionization tandem mass spectrometry (nLC-ESI-MS/MS). Since LPLs and PLs in human plasma are potential biomarkers for cancer, development of a sophisticated analytical method for the simultaneous profiling of these molecules is important. Standard species of LPLs and PLs were examined to establish a separation condition using a capillary LC column followed by MS scans and data-dependent collision-induced dissociation (CID) analysis for structural identification. With nLC-ESI-MS/MS, regioisomers of each category of LPLs were completely separated and identified with characteristic CID spectra. It was applied to the comprehensive profiling of LPLs and PLs from a human blood plasma sample and yielded identifications of 50 LPLs (each regioisomer pair of 6 lysophosphatidylcholines (LPCs), 7 lysophosphatidylethanolamines (LPEs), 9 lysophosphatidic acid (LPAs), 2 lysophosphatidylglycerols (LPGs), and 1 lysophosphatidylserine (LPS)) and 62 PLs (19 phosphatidylcholines (PCs), 11 phosphatidylethanolamines (PEs), 3 phosphatidylserines (PSs), 16 phosphatidylinositols (PIs), 8 phosphatidylglycerols (PGs), and 5 phosphatidic acids (PAs)).
Figure
The study demonstrates that regioisomers of lysophospholipid can be completely separated and identified with characteristic CID spectra using nLC-ESI-MS-MS, along with the simultaneous profiling of phospholipids from human blood plasma. |
---|---|
ISSN: | 1618-2642 1618-2650 |
DOI: | 10.1007/s00216-011-4958-7 |