Loading…

Evaluation of QNI corrections in porous media applications

Qualitative measurements using digital neutron imaging has been the more explored aspect than accurate quantitative measurements. The reason for this bias is that quantitative measurements require correction for background and material scatter, and neutron spectral effects. Quantitative Neutron Imag...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2011-09, Vol.651 (1), p.282-285
Main Authors: Radebe, M.J., de Beer, F.C., Nshimirimana, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Qualitative measurements using digital neutron imaging has been the more explored aspect than accurate quantitative measurements. The reason for this bias is that quantitative measurements require correction for background and material scatter, and neutron spectral effects. Quantitative Neutron Imaging (QNI) software package has resulted from efforts at the Paul Scherrer Institute, Helmholtz Zentrum Berlin (HZB) and Necsa to correct for these effects, while the sample-detector distance (SDD) principle has previously been demonstrated as a measure to eliminate material scatter effect. This work evaluates the capabilities of the QNI software package to produce accurate quantitative results on specific characteristics of porous media, and its role to nondestructive quantification of material with and without calibration. The work further complements QNI abilities by the use of different SDDs. Studies of effective %porosity of mortar and attenuation coefficient of water using QNI and SDD principle are reported.
ISSN:0168-9002
1872-9576
DOI:10.1016/j.nima.2011.02.023