Loading…
Determining the partial currents of silver ionization, its oxide formation, and chemical dissolution by multicycle chronoammetry with an RRDE
A multicycle chronoammetry with a rotating disc electrode with a ring (RRDE) enables one to experimentally discriminate between the partial currents of the substrate metal ionization, anodic formation of the oxide, and chemical dissolution of the oxide in the summary polarization current of the disc...
Saved in:
Published in: | Protection of metals 2008-05, Vol.44 (3), p.301-309 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c378t-c4196f9fcfeeb7322a9631e1c479dfbad13270ef2bb3208a85c95fe2b709d0c93 |
---|---|
cites | cdi_FETCH-LOGICAL-c378t-c4196f9fcfeeb7322a9631e1c479dfbad13270ef2bb3208a85c95fe2b709d0c93 |
container_end_page | 309 |
container_issue | 3 |
container_start_page | 301 |
container_title | Protection of metals |
container_volume | 44 |
creator | Kudryashov, D. A. Grushevskaya, S. N. Vvedenskii, A. V. |
description | A multicycle chronoammetry with a rotating disc electrode with a ring (RRDE) enables one to experimentally discriminate between the partial currents of the substrate metal ionization, anodic formation of the oxide, and chemical dissolution of the oxide in the summary polarization current of the disc. The technique is approved by an example of Ag|Ag
2
O|OH
−
(H
2
O) system. In a range of relatively small anodic potentials of the Ag disc (0.48 to 0.51 V), the active dissolution of silver at the open surface sites and via pores in the surface film dominates; the phase formation current and, accordingly, the current efficiency of the process rapidly drop. At the potentials of the voltammogram maximum (0.52 to 0.53 V) when the silver active dissolution current is suppressed, the phase formation currents prevail and substantially exceed the chemical dissolution rate of the oxide. The thickness of an Ag
2
O film rapidly increases under these conditions, and the current efficiency of the oxide formation is close to 100% for the whole polarization period. The rate constant of the chemical dissolution of an Ag(I) oxide is practically independent of the anodic phase-formation potential, but slightly depends on the oxide film thickness, reflecting changes in the film structure and, possibly, in its composition, from AgOH to Ag
2
O. |
doi_str_mv | 10.1134/S0033173208030144 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919942000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2425161761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-c4196f9fcfeeb7322a9631e1c479dfbad13270ef2bb3208a85c95fe2b709d0c93</originalsourceid><addsrcrecordid>eNp9kU9r3DAQxUVpoNtNP0Buoof2EqczlndtHUv-tIFAIUkhNyPLo6yCLW0luc32O_Q7V2YDgZb2NKD3e0-8GcaOEE4QRfXhBkAIrEUJDQjAqnrBFriGphBlffeSLWa5mPVX7HWMDwAIUK0W7NcZJQqjddbd87QhvlUhWTVwPYVALkXuDY92-E6BW-_sT5XyOOZ2Vh5tT9z4MD49KtdzvaHR6hzQ2xj9MM0K73Z8nIZk9U4PlJHgnVfjSCns-A-bNtnJr6_Pzg_ZgVFDpDdPc8m-Xpzfnn4urr58ujz9eFVoUTep0BXKtZFGG6IudyqVXAsk1FUte9OpHnNrIFN23bwQ1ay0XBkquxpkD1qKJXu_z90G_22imNrRRk3DoBz5KbYSpaxKyEtbsnf_JcX8U4kz-PYP8MFPweUWbdMIIQUCZgj3kA4-xkCm3QY7qrBrEdr5ju1fd8yecu-JmXX3FJ6D_236DcMroWM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883393101</pqid></control><display><type>article</type><title>Determining the partial currents of silver ionization, its oxide formation, and chemical dissolution by multicycle chronoammetry with an RRDE</title><source>Springer Nature</source><creator>Kudryashov, D. A. ; Grushevskaya, S. N. ; Vvedenskii, A. V.</creator><creatorcontrib>Kudryashov, D. A. ; Grushevskaya, S. N. ; Vvedenskii, A. V.</creatorcontrib><description>A multicycle chronoammetry with a rotating disc electrode with a ring (RRDE) enables one to experimentally discriminate between the partial currents of the substrate metal ionization, anodic formation of the oxide, and chemical dissolution of the oxide in the summary polarization current of the disc. The technique is approved by an example of Ag|Ag
2
O|OH
−
(H
2
O) system. In a range of relatively small anodic potentials of the Ag disc (0.48 to 0.51 V), the active dissolution of silver at the open surface sites and via pores in the surface film dominates; the phase formation current and, accordingly, the current efficiency of the process rapidly drop. At the potentials of the voltammogram maximum (0.52 to 0.53 V) when the silver active dissolution current is suppressed, the phase formation currents prevail and substantially exceed the chemical dissolution rate of the oxide. The thickness of an Ag
2
O film rapidly increases under these conditions, and the current efficiency of the oxide formation is close to 100% for the whole polarization period. The rate constant of the chemical dissolution of an Ag(I) oxide is practically independent of the anodic phase-formation potential, but slightly depends on the oxide film thickness, reflecting changes in the film structure and, possibly, in its composition, from AgOH to Ag
2
O.</description><identifier>ISSN: 0033-1732</identifier><identifier>ISSN: 2070-2051</identifier><identifier>EISSN: 1608-327X</identifier><identifier>EISSN: 2070-206X</identifier><identifier>DOI: 10.1134/S0033173208030144</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Anodic ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Corrosion and Coatings ; Discs ; Disks ; Dissolution ; Electrodes ; Industrial Chemistry/Chemical Engineering ; Inorganic Chemistry ; Investigation Methods for Physicochemical Systems ; Ionization ; Materials Science ; Metallic Materials ; Oxides ; Silver ; Tribology</subject><ispartof>Protection of metals, 2008-05, Vol.44 (3), p.301-309</ispartof><rights>MAIK Nauka 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-c4196f9fcfeeb7322a9631e1c479dfbad13270ef2bb3208a85c95fe2b709d0c93</citedby><cites>FETCH-LOGICAL-c378t-c4196f9fcfeeb7322a9631e1c479dfbad13270ef2bb3208a85c95fe2b709d0c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kudryashov, D. A.</creatorcontrib><creatorcontrib>Grushevskaya, S. N.</creatorcontrib><creatorcontrib>Vvedenskii, A. V.</creatorcontrib><title>Determining the partial currents of silver ionization, its oxide formation, and chemical dissolution by multicycle chronoammetry with an RRDE</title><title>Protection of metals</title><addtitle>Prot Met</addtitle><description>A multicycle chronoammetry with a rotating disc electrode with a ring (RRDE) enables one to experimentally discriminate between the partial currents of the substrate metal ionization, anodic formation of the oxide, and chemical dissolution of the oxide in the summary polarization current of the disc. The technique is approved by an example of Ag|Ag
2
O|OH
−
(H
2
O) system. In a range of relatively small anodic potentials of the Ag disc (0.48 to 0.51 V), the active dissolution of silver at the open surface sites and via pores in the surface film dominates; the phase formation current and, accordingly, the current efficiency of the process rapidly drop. At the potentials of the voltammogram maximum (0.52 to 0.53 V) when the silver active dissolution current is suppressed, the phase formation currents prevail and substantially exceed the chemical dissolution rate of the oxide. The thickness of an Ag
2
O film rapidly increases under these conditions, and the current efficiency of the oxide formation is close to 100% for the whole polarization period. The rate constant of the chemical dissolution of an Ag(I) oxide is practically independent of the anodic phase-formation potential, but slightly depends on the oxide film thickness, reflecting changes in the film structure and, possibly, in its composition, from AgOH to Ag
2
O.</description><subject>Anodic</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Corrosion and Coatings</subject><subject>Discs</subject><subject>Disks</subject><subject>Dissolution</subject><subject>Electrodes</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Inorganic Chemistry</subject><subject>Investigation Methods for Physicochemical Systems</subject><subject>Ionization</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Oxides</subject><subject>Silver</subject><subject>Tribology</subject><issn>0033-1732</issn><issn>2070-2051</issn><issn>1608-327X</issn><issn>2070-206X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kU9r3DAQxUVpoNtNP0Buoof2EqczlndtHUv-tIFAIUkhNyPLo6yCLW0luc32O_Q7V2YDgZb2NKD3e0-8GcaOEE4QRfXhBkAIrEUJDQjAqnrBFriGphBlffeSLWa5mPVX7HWMDwAIUK0W7NcZJQqjddbd87QhvlUhWTVwPYVALkXuDY92-E6BW-_sT5XyOOZ2Vh5tT9z4MD49KtdzvaHR6hzQ2xj9MM0K73Z8nIZk9U4PlJHgnVfjSCns-A-bNtnJr6_Pzg_ZgVFDpDdPc8m-Xpzfnn4urr58ujz9eFVoUTep0BXKtZFGG6IudyqVXAsk1FUte9OpHnNrIFN23bwQ1ay0XBkquxpkD1qKJXu_z90G_22imNrRRk3DoBz5KbYSpaxKyEtbsnf_JcX8U4kz-PYP8MFPweUWbdMIIQUCZgj3kA4-xkCm3QY7qrBrEdr5ju1fd8yecu-JmXX3FJ6D_236DcMroWM</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Kudryashov, D. A.</creator><creator>Grushevskaya, S. N.</creator><creator>Vvedenskii, A. V.</creator><general>SP MAIK Nauka/Interperiodica</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7SE</scope></search><sort><creationdate>20080501</creationdate><title>Determining the partial currents of silver ionization, its oxide formation, and chemical dissolution by multicycle chronoammetry with an RRDE</title><author>Kudryashov, D. A. ; Grushevskaya, S. N. ; Vvedenskii, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-c4196f9fcfeeb7322a9631e1c479dfbad13270ef2bb3208a85c95fe2b709d0c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Anodic</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Corrosion and Coatings</topic><topic>Discs</topic><topic>Disks</topic><topic>Dissolution</topic><topic>Electrodes</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Inorganic Chemistry</topic><topic>Investigation Methods for Physicochemical Systems</topic><topic>Ionization</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Oxides</topic><topic>Silver</topic><topic>Tribology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kudryashov, D. A.</creatorcontrib><creatorcontrib>Grushevskaya, S. N.</creatorcontrib><creatorcontrib>Vvedenskii, A. V.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Corrosion Abstracts</collection><jtitle>Protection of metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kudryashov, D. A.</au><au>Grushevskaya, S. N.</au><au>Vvedenskii, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determining the partial currents of silver ionization, its oxide formation, and chemical dissolution by multicycle chronoammetry with an RRDE</atitle><jtitle>Protection of metals</jtitle><stitle>Prot Met</stitle><date>2008-05-01</date><risdate>2008</risdate><volume>44</volume><issue>3</issue><spage>301</spage><epage>309</epage><pages>301-309</pages><issn>0033-1732</issn><issn>2070-2051</issn><eissn>1608-327X</eissn><eissn>2070-206X</eissn><abstract>A multicycle chronoammetry with a rotating disc electrode with a ring (RRDE) enables one to experimentally discriminate between the partial currents of the substrate metal ionization, anodic formation of the oxide, and chemical dissolution of the oxide in the summary polarization current of the disc. The technique is approved by an example of Ag|Ag
2
O|OH
−
(H
2
O) system. In a range of relatively small anodic potentials of the Ag disc (0.48 to 0.51 V), the active dissolution of silver at the open surface sites and via pores in the surface film dominates; the phase formation current and, accordingly, the current efficiency of the process rapidly drop. At the potentials of the voltammogram maximum (0.52 to 0.53 V) when the silver active dissolution current is suppressed, the phase formation currents prevail and substantially exceed the chemical dissolution rate of the oxide. The thickness of an Ag
2
O film rapidly increases under these conditions, and the current efficiency of the oxide formation is close to 100% for the whole polarization period. The rate constant of the chemical dissolution of an Ag(I) oxide is practically independent of the anodic phase-formation potential, but slightly depends on the oxide film thickness, reflecting changes in the film structure and, possibly, in its composition, from AgOH to Ag
2
O.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S0033173208030144</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-1732 |
ispartof | Protection of metals, 2008-05, Vol.44 (3), p.301-309 |
issn | 0033-1732 2070-2051 1608-327X 2070-206X |
language | eng |
recordid | cdi_proquest_miscellaneous_919942000 |
source | Springer Nature |
subjects | Anodic Characterization and Evaluation of Materials Chemistry and Materials Science Corrosion and Coatings Discs Disks Dissolution Electrodes Industrial Chemistry/Chemical Engineering Inorganic Chemistry Investigation Methods for Physicochemical Systems Ionization Materials Science Metallic Materials Oxides Silver Tribology |
title | Determining the partial currents of silver ionization, its oxide formation, and chemical dissolution by multicycle chronoammetry with an RRDE |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A25%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determining%20the%20partial%20currents%20of%20silver%20ionization,%20its%20oxide%20formation,%20and%20chemical%20dissolution%20by%20multicycle%20chronoammetry%20with%20an%20RRDE&rft.jtitle=Protection%20of%20metals&rft.au=Kudryashov,%20D.%20A.&rft.date=2008-05-01&rft.volume=44&rft.issue=3&rft.spage=301&rft.epage=309&rft.pages=301-309&rft.issn=0033-1732&rft.eissn=1608-327X&rft_id=info:doi/10.1134/S0033173208030144&rft_dat=%3Cproquest_cross%3E2425161761%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-c4196f9fcfeeb7322a9631e1c479dfbad13270ef2bb3208a85c95fe2b709d0c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=883393101&rft_id=info:pmid/&rfr_iscdi=true |