Loading…

Determining the partial currents of silver ionization, its oxide formation, and chemical dissolution by multicycle chronoammetry with an RRDE

A multicycle chronoammetry with a rotating disc electrode with a ring (RRDE) enables one to experimentally discriminate between the partial currents of the substrate metal ionization, anodic formation of the oxide, and chemical dissolution of the oxide in the summary polarization current of the disc...

Full description

Saved in:
Bibliographic Details
Published in:Protection of metals 2008-05, Vol.44 (3), p.301-309
Main Authors: Kudryashov, D. A., Grushevskaya, S. N., Vvedenskii, A. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c378t-c4196f9fcfeeb7322a9631e1c479dfbad13270ef2bb3208a85c95fe2b709d0c93
cites cdi_FETCH-LOGICAL-c378t-c4196f9fcfeeb7322a9631e1c479dfbad13270ef2bb3208a85c95fe2b709d0c93
container_end_page 309
container_issue 3
container_start_page 301
container_title Protection of metals
container_volume 44
creator Kudryashov, D. A.
Grushevskaya, S. N.
Vvedenskii, A. V.
description A multicycle chronoammetry with a rotating disc electrode with a ring (RRDE) enables one to experimentally discriminate between the partial currents of the substrate metal ionization, anodic formation of the oxide, and chemical dissolution of the oxide in the summary polarization current of the disc. The technique is approved by an example of Ag|Ag 2 O|OH − (H 2 O) system. In a range of relatively small anodic potentials of the Ag disc (0.48 to 0.51 V), the active dissolution of silver at the open surface sites and via pores in the surface film dominates; the phase formation current and, accordingly, the current efficiency of the process rapidly drop. At the potentials of the voltammogram maximum (0.52 to 0.53 V) when the silver active dissolution current is suppressed, the phase formation currents prevail and substantially exceed the chemical dissolution rate of the oxide. The thickness of an Ag 2 O film rapidly increases under these conditions, and the current efficiency of the oxide formation is close to 100% for the whole polarization period. The rate constant of the chemical dissolution of an Ag(I) oxide is practically independent of the anodic phase-formation potential, but slightly depends on the oxide film thickness, reflecting changes in the film structure and, possibly, in its composition, from AgOH to Ag 2 O.
doi_str_mv 10.1134/S0033173208030144
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919942000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2425161761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-c4196f9fcfeeb7322a9631e1c479dfbad13270ef2bb3208a85c95fe2b709d0c93</originalsourceid><addsrcrecordid>eNp9kU9r3DAQxUVpoNtNP0Buoof2EqczlndtHUv-tIFAIUkhNyPLo6yCLW0luc32O_Q7V2YDgZb2NKD3e0-8GcaOEE4QRfXhBkAIrEUJDQjAqnrBFriGphBlffeSLWa5mPVX7HWMDwAIUK0W7NcZJQqjddbd87QhvlUhWTVwPYVALkXuDY92-E6BW-_sT5XyOOZ2Vh5tT9z4MD49KtdzvaHR6hzQ2xj9MM0K73Z8nIZk9U4PlJHgnVfjSCns-A-bNtnJr6_Pzg_ZgVFDpDdPc8m-Xpzfnn4urr58ujz9eFVoUTep0BXKtZFGG6IudyqVXAsk1FUte9OpHnNrIFN23bwQ1ay0XBkquxpkD1qKJXu_z90G_22imNrRRk3DoBz5KbYSpaxKyEtbsnf_JcX8U4kz-PYP8MFPweUWbdMIIQUCZgj3kA4-xkCm3QY7qrBrEdr5ju1fd8yecu-JmXX3FJ6D_236DcMroWM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883393101</pqid></control><display><type>article</type><title>Determining the partial currents of silver ionization, its oxide formation, and chemical dissolution by multicycle chronoammetry with an RRDE</title><source>Springer Nature</source><creator>Kudryashov, D. A. ; Grushevskaya, S. N. ; Vvedenskii, A. V.</creator><creatorcontrib>Kudryashov, D. A. ; Grushevskaya, S. N. ; Vvedenskii, A. V.</creatorcontrib><description>A multicycle chronoammetry with a rotating disc electrode with a ring (RRDE) enables one to experimentally discriminate between the partial currents of the substrate metal ionization, anodic formation of the oxide, and chemical dissolution of the oxide in the summary polarization current of the disc. The technique is approved by an example of Ag|Ag 2 O|OH − (H 2 O) system. In a range of relatively small anodic potentials of the Ag disc (0.48 to 0.51 V), the active dissolution of silver at the open surface sites and via pores in the surface film dominates; the phase formation current and, accordingly, the current efficiency of the process rapidly drop. At the potentials of the voltammogram maximum (0.52 to 0.53 V) when the silver active dissolution current is suppressed, the phase formation currents prevail and substantially exceed the chemical dissolution rate of the oxide. The thickness of an Ag 2 O film rapidly increases under these conditions, and the current efficiency of the oxide formation is close to 100% for the whole polarization period. The rate constant of the chemical dissolution of an Ag(I) oxide is practically independent of the anodic phase-formation potential, but slightly depends on the oxide film thickness, reflecting changes in the film structure and, possibly, in its composition, from AgOH to Ag 2 O.</description><identifier>ISSN: 0033-1732</identifier><identifier>ISSN: 2070-2051</identifier><identifier>EISSN: 1608-327X</identifier><identifier>EISSN: 2070-206X</identifier><identifier>DOI: 10.1134/S0033173208030144</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Anodic ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Corrosion and Coatings ; Discs ; Disks ; Dissolution ; Electrodes ; Industrial Chemistry/Chemical Engineering ; Inorganic Chemistry ; Investigation Methods for Physicochemical Systems ; Ionization ; Materials Science ; Metallic Materials ; Oxides ; Silver ; Tribology</subject><ispartof>Protection of metals, 2008-05, Vol.44 (3), p.301-309</ispartof><rights>MAIK Nauka 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-c4196f9fcfeeb7322a9631e1c479dfbad13270ef2bb3208a85c95fe2b709d0c93</citedby><cites>FETCH-LOGICAL-c378t-c4196f9fcfeeb7322a9631e1c479dfbad13270ef2bb3208a85c95fe2b709d0c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kudryashov, D. A.</creatorcontrib><creatorcontrib>Grushevskaya, S. N.</creatorcontrib><creatorcontrib>Vvedenskii, A. V.</creatorcontrib><title>Determining the partial currents of silver ionization, its oxide formation, and chemical dissolution by multicycle chronoammetry with an RRDE</title><title>Protection of metals</title><addtitle>Prot Met</addtitle><description>A multicycle chronoammetry with a rotating disc electrode with a ring (RRDE) enables one to experimentally discriminate between the partial currents of the substrate metal ionization, anodic formation of the oxide, and chemical dissolution of the oxide in the summary polarization current of the disc. The technique is approved by an example of Ag|Ag 2 O|OH − (H 2 O) system. In a range of relatively small anodic potentials of the Ag disc (0.48 to 0.51 V), the active dissolution of silver at the open surface sites and via pores in the surface film dominates; the phase formation current and, accordingly, the current efficiency of the process rapidly drop. At the potentials of the voltammogram maximum (0.52 to 0.53 V) when the silver active dissolution current is suppressed, the phase formation currents prevail and substantially exceed the chemical dissolution rate of the oxide. The thickness of an Ag 2 O film rapidly increases under these conditions, and the current efficiency of the oxide formation is close to 100% for the whole polarization period. The rate constant of the chemical dissolution of an Ag(I) oxide is practically independent of the anodic phase-formation potential, but slightly depends on the oxide film thickness, reflecting changes in the film structure and, possibly, in its composition, from AgOH to Ag 2 O.</description><subject>Anodic</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Corrosion and Coatings</subject><subject>Discs</subject><subject>Disks</subject><subject>Dissolution</subject><subject>Electrodes</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Inorganic Chemistry</subject><subject>Investigation Methods for Physicochemical Systems</subject><subject>Ionization</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Oxides</subject><subject>Silver</subject><subject>Tribology</subject><issn>0033-1732</issn><issn>2070-2051</issn><issn>1608-327X</issn><issn>2070-206X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kU9r3DAQxUVpoNtNP0Buoof2EqczlndtHUv-tIFAIUkhNyPLo6yCLW0luc32O_Q7V2YDgZb2NKD3e0-8GcaOEE4QRfXhBkAIrEUJDQjAqnrBFriGphBlffeSLWa5mPVX7HWMDwAIUK0W7NcZJQqjddbd87QhvlUhWTVwPYVALkXuDY92-E6BW-_sT5XyOOZ2Vh5tT9z4MD49KtdzvaHR6hzQ2xj9MM0K73Z8nIZk9U4PlJHgnVfjSCns-A-bNtnJr6_Pzg_ZgVFDpDdPc8m-Xpzfnn4urr58ujz9eFVoUTep0BXKtZFGG6IudyqVXAsk1FUte9OpHnNrIFN23bwQ1ay0XBkquxpkD1qKJXu_z90G_22imNrRRk3DoBz5KbYSpaxKyEtbsnf_JcX8U4kz-PYP8MFPweUWbdMIIQUCZgj3kA4-xkCm3QY7qrBrEdr5ju1fd8yecu-JmXX3FJ6D_236DcMroWM</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Kudryashov, D. A.</creator><creator>Grushevskaya, S. N.</creator><creator>Vvedenskii, A. V.</creator><general>SP MAIK Nauka/Interperiodica</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7SE</scope></search><sort><creationdate>20080501</creationdate><title>Determining the partial currents of silver ionization, its oxide formation, and chemical dissolution by multicycle chronoammetry with an RRDE</title><author>Kudryashov, D. A. ; Grushevskaya, S. N. ; Vvedenskii, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-c4196f9fcfeeb7322a9631e1c479dfbad13270ef2bb3208a85c95fe2b709d0c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Anodic</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Corrosion and Coatings</topic><topic>Discs</topic><topic>Disks</topic><topic>Dissolution</topic><topic>Electrodes</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Inorganic Chemistry</topic><topic>Investigation Methods for Physicochemical Systems</topic><topic>Ionization</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Oxides</topic><topic>Silver</topic><topic>Tribology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kudryashov, D. A.</creatorcontrib><creatorcontrib>Grushevskaya, S. N.</creatorcontrib><creatorcontrib>Vvedenskii, A. V.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Corrosion Abstracts</collection><jtitle>Protection of metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kudryashov, D. A.</au><au>Grushevskaya, S. N.</au><au>Vvedenskii, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determining the partial currents of silver ionization, its oxide formation, and chemical dissolution by multicycle chronoammetry with an RRDE</atitle><jtitle>Protection of metals</jtitle><stitle>Prot Met</stitle><date>2008-05-01</date><risdate>2008</risdate><volume>44</volume><issue>3</issue><spage>301</spage><epage>309</epage><pages>301-309</pages><issn>0033-1732</issn><issn>2070-2051</issn><eissn>1608-327X</eissn><eissn>2070-206X</eissn><abstract>A multicycle chronoammetry with a rotating disc electrode with a ring (RRDE) enables one to experimentally discriminate between the partial currents of the substrate metal ionization, anodic formation of the oxide, and chemical dissolution of the oxide in the summary polarization current of the disc. The technique is approved by an example of Ag|Ag 2 O|OH − (H 2 O) system. In a range of relatively small anodic potentials of the Ag disc (0.48 to 0.51 V), the active dissolution of silver at the open surface sites and via pores in the surface film dominates; the phase formation current and, accordingly, the current efficiency of the process rapidly drop. At the potentials of the voltammogram maximum (0.52 to 0.53 V) when the silver active dissolution current is suppressed, the phase formation currents prevail and substantially exceed the chemical dissolution rate of the oxide. The thickness of an Ag 2 O film rapidly increases under these conditions, and the current efficiency of the oxide formation is close to 100% for the whole polarization period. The rate constant of the chemical dissolution of an Ag(I) oxide is practically independent of the anodic phase-formation potential, but slightly depends on the oxide film thickness, reflecting changes in the film structure and, possibly, in its composition, from AgOH to Ag 2 O.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S0033173208030144</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0033-1732
ispartof Protection of metals, 2008-05, Vol.44 (3), p.301-309
issn 0033-1732
2070-2051
1608-327X
2070-206X
language eng
recordid cdi_proquest_miscellaneous_919942000
source Springer Nature
subjects Anodic
Characterization and Evaluation of Materials
Chemistry and Materials Science
Corrosion and Coatings
Discs
Disks
Dissolution
Electrodes
Industrial Chemistry/Chemical Engineering
Inorganic Chemistry
Investigation Methods for Physicochemical Systems
Ionization
Materials Science
Metallic Materials
Oxides
Silver
Tribology
title Determining the partial currents of silver ionization, its oxide formation, and chemical dissolution by multicycle chronoammetry with an RRDE
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A25%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determining%20the%20partial%20currents%20of%20silver%20ionization,%20its%20oxide%20formation,%20and%20chemical%20dissolution%20by%20multicycle%20chronoammetry%20with%20an%20RRDE&rft.jtitle=Protection%20of%20metals&rft.au=Kudryashov,%20D.%20A.&rft.date=2008-05-01&rft.volume=44&rft.issue=3&rft.spage=301&rft.epage=309&rft.pages=301-309&rft.issn=0033-1732&rft.eissn=1608-327X&rft_id=info:doi/10.1134/S0033173208030144&rft_dat=%3Cproquest_cross%3E2425161761%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-c4196f9fcfeeb7322a9631e1c479dfbad13270ef2bb3208a85c95fe2b709d0c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=883393101&rft_id=info:pmid/&rfr_iscdi=true