Loading…

Natural Weathering and Sea Water Effects on the Durability of Glass Fiber Reinforced Vinylester: Fractographic Analysis

This paper presents a study of the effects of harsh outdoor weather and warm sea water on the tensile behavior of Glass-Fiber Reinforced Vinylester (GFRV) pipe materials destined for sea water handling and transportation. The effect of Dhahran’s outdoor weather for exposure periods ranging from 3 to...

Full description

Saved in:
Bibliographic Details
Published in:Applied composite materials 2010-10, Vol.17 (5), p.417-426
Main Authors: Merah, Nesar, Nizamuddin, Seyed, Khan, Zafarullah, Al-Sulaiman, Faleh, Mehdi, Moeid
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a study of the effects of harsh outdoor weather and warm sea water on the tensile behavior of Glass-Fiber Reinforced Vinylester (GFRV) pipe materials destined for sea water handling and transportation. The effect of Dhahran’s outdoor weather for exposure periods ranging from 3 to 36 months revealed an improvement in tensile strength when compared with the as received GFRV sample. A significant increasing trend of tensile strength from 3 to 12 months was noted. This is attributed mainly to the post curing effects resulting in higher cross linking density. After 12 months of exposure the tensile strength showed a decreasing trend, but remaining still higher than the average tensile strength of as received (baseline) GFRV sample. Similar results of enhanced tensile strength were noted after immersion of GFRV pipes in warm Gulf sea water for 12 months. Fractographic analysis was performed on the tensile tested GFRV samples using optical microscope followed by scanning electron microscope (SEM). The characterization of the controlling failure mechanisms involved from fracture initiation to fracture propagation through the gage section of the specimen were predicted and were justified by correlating the optical and SEM pictures.
ISSN:0929-189X
1573-4897
DOI:10.1007/s10443-010-9169-4