Loading…

An optical nanotrap array movable over a milimetre range

We present the theoretical and experimental study of nondiffracting Bessel beams as a device for optical manipulation and confinement of nanoparticles. We express analytically the optical forces acting on a nanoparticle placed into a single and two counter-propagating non-paraxial nondiffracting bea...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics. B, Lasers and optics Lasers and optics, 2006-07, Vol.84 (1-2), p.197-203
Main Authors: Cizmar, T, Siler, M, Zemanek, P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c277t-69a8f559431eff258dba4f6f5e2622bef62caf19a4d382b0a5a12ee2191f46173
cites cdi_FETCH-LOGICAL-c277t-69a8f559431eff258dba4f6f5e2622bef62caf19a4d382b0a5a12ee2191f46173
container_end_page 203
container_issue 1-2
container_start_page 197
container_title Applied physics. B, Lasers and optics
container_volume 84
creator Cizmar, T
Siler, M
Zemanek, P
description We present the theoretical and experimental study of nondiffracting Bessel beams as a device for optical manipulation and confinement of nanoparticles. We express analytically the optical forces acting on a nanoparticle placed into a single and two counter-propagating non-paraxial nondiffracting beams created behind the axicon. Nanoparticle behavior in these configurations is predicted by computer simulations. Finally we demonstrate experimentally how standing waves created from two independent counter-propagating nondiffraction beams confines polystyrene beads of radii 100 nm, and organizes them into a one-dimensional chain 1 mm long. Phase shift in one beam causes the motion of the whole structure of the standing wave together with any confined objects over its extent.
doi_str_mv 10.1007/s00340-006-2221-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919949062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>919949062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-69a8f559431eff258dba4f6f5e2622bef62caf19a4d382b0a5a12ee2191f46173</originalsourceid><addsrcrecordid>eNotkE9LxDAUxIMoWFc_gLfcPFXzXtO0OS6L_2DBi57Da_dFKm1Tk-7Cfnu7rHOZwwwD8xPiHtQjKFU9JaUKrXKlTI6IkOOFyEAXmCuj7aXIlNVLAhVci5uUftQiU9eZqNejDNPctdTLkcYwR5okxUhHOYQDNT3LcOAoSQ5d3w08R5aRxm--FVee-sR3_74SXy_Pn5u3fPvx-r5Zb_MWq2rOjaXal6XVBbD3WNa7hrQ3vmQ0iA17gy15sKR3RY2NopIAmREseG2gKlbi4bw7xfC75zS7oUst9z2NHPbJWbBWW2VwacK52caQUmTvptgNFI8OlDtBcmdIbrnuTpAcFn9FUVlu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919949062</pqid></control><display><type>article</type><title>An optical nanotrap array movable over a milimetre range</title><source>Springer Nature</source><creator>Cizmar, T ; Siler, M ; Zemanek, P</creator><creatorcontrib>Cizmar, T ; Siler, M ; Zemanek, P</creatorcontrib><description>We present the theoretical and experimental study of nondiffracting Bessel beams as a device for optical manipulation and confinement of nanoparticles. We express analytically the optical forces acting on a nanoparticle placed into a single and two counter-propagating non-paraxial nondiffracting beams created behind the axicon. Nanoparticle behavior in these configurations is predicted by computer simulations. Finally we demonstrate experimentally how standing waves created from two independent counter-propagating nondiffraction beams confines polystyrene beads of radii 100 nm, and organizes them into a one-dimensional chain 1 mm long. Phase shift in one beam causes the motion of the whole structure of the standing wave together with any confined objects over its extent.</description><identifier>ISSN: 0946-2171</identifier><identifier>EISSN: 1432-0649</identifier><identifier>DOI: 10.1007/s00340-006-2221-2</identifier><language>eng</language><subject>Arrays ; Beads ; Beams (radiation) ; Nanocomposites ; Nanomaterials ; Nanoparticles ; Nanostructure ; Standing waves</subject><ispartof>Applied physics. B, Lasers and optics, 2006-07, Vol.84 (1-2), p.197-203</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-69a8f559431eff258dba4f6f5e2622bef62caf19a4d382b0a5a12ee2191f46173</citedby><cites>FETCH-LOGICAL-c277t-69a8f559431eff258dba4f6f5e2622bef62caf19a4d382b0a5a12ee2191f46173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Cizmar, T</creatorcontrib><creatorcontrib>Siler, M</creatorcontrib><creatorcontrib>Zemanek, P</creatorcontrib><title>An optical nanotrap array movable over a milimetre range</title><title>Applied physics. B, Lasers and optics</title><description>We present the theoretical and experimental study of nondiffracting Bessel beams as a device for optical manipulation and confinement of nanoparticles. We express analytically the optical forces acting on a nanoparticle placed into a single and two counter-propagating non-paraxial nondiffracting beams created behind the axicon. Nanoparticle behavior in these configurations is predicted by computer simulations. Finally we demonstrate experimentally how standing waves created from two independent counter-propagating nondiffraction beams confines polystyrene beads of radii 100 nm, and organizes them into a one-dimensional chain 1 mm long. Phase shift in one beam causes the motion of the whole structure of the standing wave together with any confined objects over its extent.</description><subject>Arrays</subject><subject>Beads</subject><subject>Beams (radiation)</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Standing waves</subject><issn>0946-2171</issn><issn>1432-0649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNotkE9LxDAUxIMoWFc_gLfcPFXzXtO0OS6L_2DBi57Da_dFKm1Tk-7Cfnu7rHOZwwwD8xPiHtQjKFU9JaUKrXKlTI6IkOOFyEAXmCuj7aXIlNVLAhVci5uUftQiU9eZqNejDNPctdTLkcYwR5okxUhHOYQDNT3LcOAoSQ5d3w08R5aRxm--FVee-sR3_74SXy_Pn5u3fPvx-r5Zb_MWq2rOjaXal6XVBbD3WNa7hrQ3vmQ0iA17gy15sKR3RY2NopIAmREseG2gKlbi4bw7xfC75zS7oUst9z2NHPbJWbBWW2VwacK52caQUmTvptgNFI8OlDtBcmdIbrnuTpAcFn9FUVlu</recordid><startdate>200607</startdate><enddate>200607</enddate><creator>Cizmar, T</creator><creator>Siler, M</creator><creator>Zemanek, P</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>200607</creationdate><title>An optical nanotrap array movable over a milimetre range</title><author>Cizmar, T ; Siler, M ; Zemanek, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-69a8f559431eff258dba4f6f5e2622bef62caf19a4d382b0a5a12ee2191f46173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Arrays</topic><topic>Beads</topic><topic>Beams (radiation)</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Standing waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cizmar, T</creatorcontrib><creatorcontrib>Siler, M</creatorcontrib><creatorcontrib>Zemanek, P</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics. B, Lasers and optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cizmar, T</au><au>Siler, M</au><au>Zemanek, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An optical nanotrap array movable over a milimetre range</atitle><jtitle>Applied physics. B, Lasers and optics</jtitle><date>2006-07</date><risdate>2006</risdate><volume>84</volume><issue>1-2</issue><spage>197</spage><epage>203</epage><pages>197-203</pages><issn>0946-2171</issn><eissn>1432-0649</eissn><abstract>We present the theoretical and experimental study of nondiffracting Bessel beams as a device for optical manipulation and confinement of nanoparticles. We express analytically the optical forces acting on a nanoparticle placed into a single and two counter-propagating non-paraxial nondiffracting beams created behind the axicon. Nanoparticle behavior in these configurations is predicted by computer simulations. Finally we demonstrate experimentally how standing waves created from two independent counter-propagating nondiffraction beams confines polystyrene beads of radii 100 nm, and organizes them into a one-dimensional chain 1 mm long. Phase shift in one beam causes the motion of the whole structure of the standing wave together with any confined objects over its extent.</abstract><doi>10.1007/s00340-006-2221-2</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0946-2171
ispartof Applied physics. B, Lasers and optics, 2006-07, Vol.84 (1-2), p.197-203
issn 0946-2171
1432-0649
language eng
recordid cdi_proquest_miscellaneous_919949062
source Springer Nature
subjects Arrays
Beads
Beams (radiation)
Nanocomposites
Nanomaterials
Nanoparticles
Nanostructure
Standing waves
title An optical nanotrap array movable over a milimetre range
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A26%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20optical%20nanotrap%20array%20movable%20over%20a%20milimetre%20range&rft.jtitle=Applied%20physics.%20B,%20Lasers%20and%20optics&rft.au=Cizmar,%20T&rft.date=2006-07&rft.volume=84&rft.issue=1-2&rft.spage=197&rft.epage=203&rft.pages=197-203&rft.issn=0946-2171&rft.eissn=1432-0649&rft_id=info:doi/10.1007/s00340-006-2221-2&rft_dat=%3Cproquest_cross%3E919949062%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c277t-69a8f559431eff258dba4f6f5e2622bef62caf19a4d382b0a5a12ee2191f46173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=919949062&rft_id=info:pmid/&rfr_iscdi=true