Loading…
Thermal Properties and Flammability of Ethylene-Vinyl Acetate Copolymer/Montmorillonite/Polyethylene Nanocomposites with Flame Retardants
Ethylene-vinyl acetate copolymer (EVA)/montmorillonite (MMT) composite was blended with a linear low density polyethylene (LLDPE). X-ray diffraction and transmission electron microscopy (TEM) image of the EVA/MMT composite are in support of an intercalated with partially delaminated nanocomposite. T...
Saved in:
Published in: | Journal of polymer research 2004-09, Vol.11 (3), p.169-174 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ethylene-vinyl acetate copolymer (EVA)/montmorillonite (MMT) composite was blended with a linear low density polyethylene (LLDPE). X-ray diffraction and transmission electron microscopy (TEM) image of the EVA/MMT composite are in support of an intercalated with partially delaminated nanocomposite. The tensile strength of the nanocomposite is about 20% higher than that without layered silicates, MMT. Furthermore, the incorporation of MMT into polymer blend delays the main thermo-oxidative degradation. Cone calorimeter test points out that the addition of layered silicates into the pristine EVA/LLDPE blend or the blend with a low smoke non-halogen (LSNH) fire retardants, aluminum trihydroxide, and antimony trioxide, can reduce the maximum heat release rate by 30-40%. The smoke suppressing effect of layered silicates is only observed in the nanocomposite containing flame retardants. According to the limiting oxygen index (LOI) data and cone calorimeter test, the addition of the nanodispersed layered silicate and LSNH flame retardants to the EVA/LLDPE exhibits a synergistic effect on the flame retardancy and smoke suppression. |
---|---|
ISSN: | 1022-9760 1572-8935 |
DOI: | 10.1023/B:JPOL.0000043401.38140.58 |