Loading…
Point of zero potential of single-crystal electrode/inert electrolyte interface
[Display omitted] ► Electrostatic characteristics of specific crystal faces from non-hysteretic titration. ► Surface reconstruction increases the number of sites with high proton affinity. ► Halide ions preferentially adsorbed on silver halide surfaces. Most of the environmentally important processe...
Saved in:
Published in: | Journal of colloid and interface science 2012-03, Vol.370 (1), p.139-143 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c442t-8b56fd3d27feabdd61094b50eb78c70423c1c089db24336d3ee279e843a6e9ba3 |
---|---|
cites | cdi_FETCH-LOGICAL-c442t-8b56fd3d27feabdd61094b50eb78c70423c1c089db24336d3ee279e843a6e9ba3 |
container_end_page | 143 |
container_issue | 1 |
container_start_page | 139 |
container_title | Journal of colloid and interface science |
container_volume | 370 |
creator | Zarzycki, Piotr Preočanin, Tajana |
description | [Display omitted]
► Electrostatic characteristics of specific crystal faces from non-hysteretic titration. ► Surface reconstruction increases the number of sites with high proton affinity. ► Halide ions preferentially adsorbed on silver halide surfaces.
Most of the environmentally important processes occur at the specific hydrated mineral faces. Their rates and mechanisms are in part controlled by the interfacial electrostatics, which can be quantitatively described by the point of zero potential (PZP). Unfortunately, the PZP value of specific crystal face is very difficult to be experimentally determined. Here we show that PZP can be extracted from a single-crystal electrode potentiometric titration, assuming the stable electrochemical cell resistivity and lack of specific electrolyte ions sorption. Our method is based on determining a common intersection point of the electrochemical cell electromotive force at various ionic strengths, and it is illustrated for a few selected surfaces of rutile, hematite, silver chloride, and bromide monocrystals. In the case of metal oxides, we have observed the higher PZP values than those theoretically predicted using the MultiSite Complexation Model (MUSIC), that is, 8.4 for (001) hematite (MUSIC-predicted ∼6), 8.7 for (110) rutile (MUSIC-predicted ∼6), and about 7 for (001) rutile (MUSIC-predicted 6.6). In the case of silver halides, the order of estimated PZP values (6.4 for AgCl |
doi_str_mv | 10.1016/j.jcis.2011.12.068 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_920229484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979711015797</els_id><sourcerecordid>920229484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-8b56fd3d27feabdd61094b50eb78c70423c1c089db24336d3ee279e843a6e9ba3</originalsourceid><addsrcrecordid>eNp9kU2LFDEQhoMo7jj6BzzoXEQv3ZtU0kkH9iKLX7Cwgu45pJPqJUNPZ0wywvjrTTOze9xTSPHUW8VThLxltGWUycttu3Uht0AZaxm0VPbPyIpR3TWKUf6crCgF1mil1QV5lfOWVrDr9EtyAQBKgehW5PZnDHPZxHHzD1Pc7GPBuQQ7LZUc5vsJG5eOudQKTuhKih4vw4ypPPynY8FNzcA0WoevyYvRThnfnN81ufv65ff19-bm9tuP6883jRMCStMPnRw996BGtIP3sq4tho7ioHqnqADumKO99gMIzqXniKA09oJbiXqwfE0-nnL3Kf45YC5mF7LDabIzxkM2GiiAFrVhTT49SVaVWlYXilcUTqhLMeeEo9mnsLPpWKGFk2ZrFuVmUW4YmKq8Nr075x-GHfrHlgfHFfhwBmx2dhqTnZeMR66TWi3j1-T9iRttNPY-VebuV50kKaVKCViIqxOB1ezfgMlkF3B26EOqtzA-hqc2_Q-_J6i7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019624573</pqid></control><display><type>article</type><title>Point of zero potential of single-crystal electrode/inert electrolyte interface</title><source>ScienceDirect Journals</source><creator>Zarzycki, Piotr ; Preočanin, Tajana</creator><creatorcontrib>Zarzycki, Piotr ; Preočanin, Tajana</creatorcontrib><description>[Display omitted]
► Electrostatic characteristics of specific crystal faces from non-hysteretic titration. ► Surface reconstruction increases the number of sites with high proton affinity. ► Halide ions preferentially adsorbed on silver halide surfaces.
Most of the environmentally important processes occur at the specific hydrated mineral faces. Their rates and mechanisms are in part controlled by the interfacial electrostatics, which can be quantitatively described by the point of zero potential (PZP). Unfortunately, the PZP value of specific crystal face is very difficult to be experimentally determined. Here we show that PZP can be extracted from a single-crystal electrode potentiometric titration, assuming the stable electrochemical cell resistivity and lack of specific electrolyte ions sorption. Our method is based on determining a common intersection point of the electrochemical cell electromotive force at various ionic strengths, and it is illustrated for a few selected surfaces of rutile, hematite, silver chloride, and bromide monocrystals. In the case of metal oxides, we have observed the higher PZP values than those theoretically predicted using the MultiSite Complexation Model (MUSIC), that is, 8.4 for (001) hematite (MUSIC-predicted ∼6), 8.7 for (110) rutile (MUSIC-predicted ∼6), and about 7 for (001) rutile (MUSIC-predicted 6.6). In the case of silver halides, the order of estimated PZP values (6.4 for AgCl<6.5 for AgBr) agrees well with sequence estimated from the silver halide solubility products; however, the halide anions (Cl−, Br−) are attracted toward surface much stronger than the Ag+ cations. The observed PZPs sequence and strong anions affinity toward silver halide surface can be correlated with ions hydration energies. Presented approach is the complementary one to the hysteresis method reported previously [P. Zarzycki, S. Chatman, T. Preočanin, K.M. Rosso, Langmuir 27 (2011) 7986–7990]. A unique experimental characterization of specific crystal faces provided by these two methods is essential in deeper understanding of environmentally important processes, including migration of heavy and radioactive ions in soils and groundwaters.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2011.12.068</identifier><identifier>PMID: 22277245</identifier><identifier>CODEN: JCISA5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Anions ; cations ; Chemistry ; Common intersection point ; Electrochemical cells ; electrochemistry ; Electrodes ; electrolytes ; Exact sciences and technology ; General and physical chemistry ; groundwater ; Hematite ; hysteresis ; ionic strength ; Mathematical models ; oxides ; Point of zero potential ; Point of zero salt effect ; Rutile ; Silver bromide ; Silver chloride ; Silver halides ; Single crystals ; Single-crystal electrode ; soil ; solubility ; sorption ; Surface physical chemistry ; Surface potential ; titration</subject><ispartof>Journal of colloid and interface science, 2012-03, Vol.370 (1), p.139-143</ispartof><rights>2012 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-8b56fd3d27feabdd61094b50eb78c70423c1c089db24336d3ee279e843a6e9ba3</citedby><cites>FETCH-LOGICAL-c442t-8b56fd3d27feabdd61094b50eb78c70423c1c089db24336d3ee279e843a6e9ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25697457$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22277245$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zarzycki, Piotr</creatorcontrib><creatorcontrib>Preočanin, Tajana</creatorcontrib><title>Point of zero potential of single-crystal electrode/inert electrolyte interface</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>[Display omitted]
► Electrostatic characteristics of specific crystal faces from non-hysteretic titration. ► Surface reconstruction increases the number of sites with high proton affinity. ► Halide ions preferentially adsorbed on silver halide surfaces.
Most of the environmentally important processes occur at the specific hydrated mineral faces. Their rates and mechanisms are in part controlled by the interfacial electrostatics, which can be quantitatively described by the point of zero potential (PZP). Unfortunately, the PZP value of specific crystal face is very difficult to be experimentally determined. Here we show that PZP can be extracted from a single-crystal electrode potentiometric titration, assuming the stable electrochemical cell resistivity and lack of specific electrolyte ions sorption. Our method is based on determining a common intersection point of the electrochemical cell electromotive force at various ionic strengths, and it is illustrated for a few selected surfaces of rutile, hematite, silver chloride, and bromide monocrystals. In the case of metal oxides, we have observed the higher PZP values than those theoretically predicted using the MultiSite Complexation Model (MUSIC), that is, 8.4 for (001) hematite (MUSIC-predicted ∼6), 8.7 for (110) rutile (MUSIC-predicted ∼6), and about 7 for (001) rutile (MUSIC-predicted 6.6). In the case of silver halides, the order of estimated PZP values (6.4 for AgCl<6.5 for AgBr) agrees well with sequence estimated from the silver halide solubility products; however, the halide anions (Cl−, Br−) are attracted toward surface much stronger than the Ag+ cations. The observed PZPs sequence and strong anions affinity toward silver halide surface can be correlated with ions hydration energies. Presented approach is the complementary one to the hysteresis method reported previously [P. Zarzycki, S. Chatman, T. Preočanin, K.M. Rosso, Langmuir 27 (2011) 7986–7990]. A unique experimental characterization of specific crystal faces provided by these two methods is essential in deeper understanding of environmentally important processes, including migration of heavy and radioactive ions in soils and groundwaters.</description><subject>Anions</subject><subject>cations</subject><subject>Chemistry</subject><subject>Common intersection point</subject><subject>Electrochemical cells</subject><subject>electrochemistry</subject><subject>Electrodes</subject><subject>electrolytes</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>groundwater</subject><subject>Hematite</subject><subject>hysteresis</subject><subject>ionic strength</subject><subject>Mathematical models</subject><subject>oxides</subject><subject>Point of zero potential</subject><subject>Point of zero salt effect</subject><subject>Rutile</subject><subject>Silver bromide</subject><subject>Silver chloride</subject><subject>Silver halides</subject><subject>Single crystals</subject><subject>Single-crystal electrode</subject><subject>soil</subject><subject>solubility</subject><subject>sorption</subject><subject>Surface physical chemistry</subject><subject>Surface potential</subject><subject>titration</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kU2LFDEQhoMo7jj6BzzoXEQv3ZtU0kkH9iKLX7Cwgu45pJPqJUNPZ0wywvjrTTOze9xTSPHUW8VThLxltGWUycttu3Uht0AZaxm0VPbPyIpR3TWKUf6crCgF1mil1QV5lfOWVrDr9EtyAQBKgehW5PZnDHPZxHHzD1Pc7GPBuQQ7LZUc5vsJG5eOudQKTuhKih4vw4ypPPynY8FNzcA0WoevyYvRThnfnN81ufv65ff19-bm9tuP6883jRMCStMPnRw996BGtIP3sq4tho7ioHqnqADumKO99gMIzqXniKA09oJbiXqwfE0-nnL3Kf45YC5mF7LDabIzxkM2GiiAFrVhTT49SVaVWlYXilcUTqhLMeeEo9mnsLPpWKGFk2ZrFuVmUW4YmKq8Nr075x-GHfrHlgfHFfhwBmx2dhqTnZeMR66TWi3j1-T9iRttNPY-VebuV50kKaVKCViIqxOB1ezfgMlkF3B26EOqtzA-hqc2_Q-_J6i7</recordid><startdate>20120315</startdate><enddate>20120315</enddate><creator>Zarzycki, Piotr</creator><creator>Preočanin, Tajana</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20120315</creationdate><title>Point of zero potential of single-crystal electrode/inert electrolyte interface</title><author>Zarzycki, Piotr ; Preočanin, Tajana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-8b56fd3d27feabdd61094b50eb78c70423c1c089db24336d3ee279e843a6e9ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Anions</topic><topic>cations</topic><topic>Chemistry</topic><topic>Common intersection point</topic><topic>Electrochemical cells</topic><topic>electrochemistry</topic><topic>Electrodes</topic><topic>electrolytes</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>groundwater</topic><topic>Hematite</topic><topic>hysteresis</topic><topic>ionic strength</topic><topic>Mathematical models</topic><topic>oxides</topic><topic>Point of zero potential</topic><topic>Point of zero salt effect</topic><topic>Rutile</topic><topic>Silver bromide</topic><topic>Silver chloride</topic><topic>Silver halides</topic><topic>Single crystals</topic><topic>Single-crystal electrode</topic><topic>soil</topic><topic>solubility</topic><topic>sorption</topic><topic>Surface physical chemistry</topic><topic>Surface potential</topic><topic>titration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zarzycki, Piotr</creatorcontrib><creatorcontrib>Preočanin, Tajana</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zarzycki, Piotr</au><au>Preočanin, Tajana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Point of zero potential of single-crystal electrode/inert electrolyte interface</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2012-03-15</date><risdate>2012</risdate><volume>370</volume><issue>1</issue><spage>139</spage><epage>143</epage><pages>139-143</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><coden>JCISA5</coden><abstract>[Display omitted]
► Electrostatic characteristics of specific crystal faces from non-hysteretic titration. ► Surface reconstruction increases the number of sites with high proton affinity. ► Halide ions preferentially adsorbed on silver halide surfaces.
Most of the environmentally important processes occur at the specific hydrated mineral faces. Their rates and mechanisms are in part controlled by the interfacial electrostatics, which can be quantitatively described by the point of zero potential (PZP). Unfortunately, the PZP value of specific crystal face is very difficult to be experimentally determined. Here we show that PZP can be extracted from a single-crystal electrode potentiometric titration, assuming the stable electrochemical cell resistivity and lack of specific electrolyte ions sorption. Our method is based on determining a common intersection point of the electrochemical cell electromotive force at various ionic strengths, and it is illustrated for a few selected surfaces of rutile, hematite, silver chloride, and bromide monocrystals. In the case of metal oxides, we have observed the higher PZP values than those theoretically predicted using the MultiSite Complexation Model (MUSIC), that is, 8.4 for (001) hematite (MUSIC-predicted ∼6), 8.7 for (110) rutile (MUSIC-predicted ∼6), and about 7 for (001) rutile (MUSIC-predicted 6.6). In the case of silver halides, the order of estimated PZP values (6.4 for AgCl<6.5 for AgBr) agrees well with sequence estimated from the silver halide solubility products; however, the halide anions (Cl−, Br−) are attracted toward surface much stronger than the Ag+ cations. The observed PZPs sequence and strong anions affinity toward silver halide surface can be correlated with ions hydration energies. Presented approach is the complementary one to the hysteresis method reported previously [P. Zarzycki, S. Chatman, T. Preočanin, K.M. Rosso, Langmuir 27 (2011) 7986–7990]. A unique experimental characterization of specific crystal faces provided by these two methods is essential in deeper understanding of environmentally important processes, including migration of heavy and radioactive ions in soils and groundwaters.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>22277245</pmid><doi>10.1016/j.jcis.2011.12.068</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9797 |
ispartof | Journal of colloid and interface science, 2012-03, Vol.370 (1), p.139-143 |
issn | 0021-9797 1095-7103 |
language | eng |
recordid | cdi_proquest_miscellaneous_920229484 |
source | ScienceDirect Journals |
subjects | Anions cations Chemistry Common intersection point Electrochemical cells electrochemistry Electrodes electrolytes Exact sciences and technology General and physical chemistry groundwater Hematite hysteresis ionic strength Mathematical models oxides Point of zero potential Point of zero salt effect Rutile Silver bromide Silver chloride Silver halides Single crystals Single-crystal electrode soil solubility sorption Surface physical chemistry Surface potential titration |
title | Point of zero potential of single-crystal electrode/inert electrolyte interface |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A33%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Point%20of%20zero%20potential%20of%20single-crystal%20electrode/inert%20electrolyte%20interface&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Zarzycki,%20Piotr&rft.date=2012-03-15&rft.volume=370&rft.issue=1&rft.spage=139&rft.epage=143&rft.pages=139-143&rft.issn=0021-9797&rft.eissn=1095-7103&rft.coden=JCISA5&rft_id=info:doi/10.1016/j.jcis.2011.12.068&rft_dat=%3Cproquest_cross%3E920229484%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c442t-8b56fd3d27feabdd61094b50eb78c70423c1c089db24336d3ee279e843a6e9ba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1019624573&rft_id=info:pmid/22277245&rfr_iscdi=true |