Loading…

Point of zero potential of single-crystal electrode/inert electrolyte interface

[Display omitted] ► Electrostatic characteristics of specific crystal faces from non-hysteretic titration. ► Surface reconstruction increases the number of sites with high proton affinity. ► Halide ions preferentially adsorbed on silver halide surfaces. Most of the environmentally important processe...

Full description

Saved in:
Bibliographic Details
Published in:Journal of colloid and interface science 2012-03, Vol.370 (1), p.139-143
Main Authors: Zarzycki, Piotr, Preočanin, Tajana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c442t-8b56fd3d27feabdd61094b50eb78c70423c1c089db24336d3ee279e843a6e9ba3
cites cdi_FETCH-LOGICAL-c442t-8b56fd3d27feabdd61094b50eb78c70423c1c089db24336d3ee279e843a6e9ba3
container_end_page 143
container_issue 1
container_start_page 139
container_title Journal of colloid and interface science
container_volume 370
creator Zarzycki, Piotr
Preočanin, Tajana
description [Display omitted] ► Electrostatic characteristics of specific crystal faces from non-hysteretic titration. ► Surface reconstruction increases the number of sites with high proton affinity. ► Halide ions preferentially adsorbed on silver halide surfaces. Most of the environmentally important processes occur at the specific hydrated mineral faces. Their rates and mechanisms are in part controlled by the interfacial electrostatics, which can be quantitatively described by the point of zero potential (PZP). Unfortunately, the PZP value of specific crystal face is very difficult to be experimentally determined. Here we show that PZP can be extracted from a single-crystal electrode potentiometric titration, assuming the stable electrochemical cell resistivity and lack of specific electrolyte ions sorption. Our method is based on determining a common intersection point of the electrochemical cell electromotive force at various ionic strengths, and it is illustrated for a few selected surfaces of rutile, hematite, silver chloride, and bromide monocrystals. In the case of metal oxides, we have observed the higher PZP values than those theoretically predicted using the MultiSite Complexation Model (MUSIC), that is, 8.4 for (001) hematite (MUSIC-predicted ∼6), 8.7 for (110) rutile (MUSIC-predicted ∼6), and about 7 for (001) rutile (MUSIC-predicted 6.6). In the case of silver halides, the order of estimated PZP values (6.4 for AgCl
doi_str_mv 10.1016/j.jcis.2011.12.068
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_920229484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979711015797</els_id><sourcerecordid>920229484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-8b56fd3d27feabdd61094b50eb78c70423c1c089db24336d3ee279e843a6e9ba3</originalsourceid><addsrcrecordid>eNp9kU2LFDEQhoMo7jj6BzzoXEQv3ZtU0kkH9iKLX7Cwgu45pJPqJUNPZ0wywvjrTTOze9xTSPHUW8VThLxltGWUycttu3Uht0AZaxm0VPbPyIpR3TWKUf6crCgF1mil1QV5lfOWVrDr9EtyAQBKgehW5PZnDHPZxHHzD1Pc7GPBuQQ7LZUc5vsJG5eOudQKTuhKih4vw4ypPPynY8FNzcA0WoevyYvRThnfnN81ufv65ff19-bm9tuP6883jRMCStMPnRw996BGtIP3sq4tho7ioHqnqADumKO99gMIzqXniKA09oJbiXqwfE0-nnL3Kf45YC5mF7LDabIzxkM2GiiAFrVhTT49SVaVWlYXilcUTqhLMeeEo9mnsLPpWKGFk2ZrFuVmUW4YmKq8Nr075x-GHfrHlgfHFfhwBmx2dhqTnZeMR66TWi3j1-T9iRttNPY-VebuV50kKaVKCViIqxOB1ezfgMlkF3B26EOqtzA-hqc2_Q-_J6i7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019624573</pqid></control><display><type>article</type><title>Point of zero potential of single-crystal electrode/inert electrolyte interface</title><source>ScienceDirect Journals</source><creator>Zarzycki, Piotr ; Preočanin, Tajana</creator><creatorcontrib>Zarzycki, Piotr ; Preočanin, Tajana</creatorcontrib><description>[Display omitted] ► Electrostatic characteristics of specific crystal faces from non-hysteretic titration. ► Surface reconstruction increases the number of sites with high proton affinity. ► Halide ions preferentially adsorbed on silver halide surfaces. Most of the environmentally important processes occur at the specific hydrated mineral faces. Their rates and mechanisms are in part controlled by the interfacial electrostatics, which can be quantitatively described by the point of zero potential (PZP). Unfortunately, the PZP value of specific crystal face is very difficult to be experimentally determined. Here we show that PZP can be extracted from a single-crystal electrode potentiometric titration, assuming the stable electrochemical cell resistivity and lack of specific electrolyte ions sorption. Our method is based on determining a common intersection point of the electrochemical cell electromotive force at various ionic strengths, and it is illustrated for a few selected surfaces of rutile, hematite, silver chloride, and bromide monocrystals. In the case of metal oxides, we have observed the higher PZP values than those theoretically predicted using the MultiSite Complexation Model (MUSIC), that is, 8.4 for (001) hematite (MUSIC-predicted ∼6), 8.7 for (110) rutile (MUSIC-predicted ∼6), and about 7 for (001) rutile (MUSIC-predicted 6.6). In the case of silver halides, the order of estimated PZP values (6.4 for AgCl&lt;6.5 for AgBr) agrees well with sequence estimated from the silver halide solubility products; however, the halide anions (Cl−, Br−) are attracted toward surface much stronger than the Ag+ cations. The observed PZPs sequence and strong anions affinity toward silver halide surface can be correlated with ions hydration energies. Presented approach is the complementary one to the hysteresis method reported previously [P. Zarzycki, S. Chatman, T. Preočanin, K.M. Rosso, Langmuir 27 (2011) 7986–7990]. A unique experimental characterization of specific crystal faces provided by these two methods is essential in deeper understanding of environmentally important processes, including migration of heavy and radioactive ions in soils and groundwaters.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2011.12.068</identifier><identifier>PMID: 22277245</identifier><identifier>CODEN: JCISA5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Anions ; cations ; Chemistry ; Common intersection point ; Electrochemical cells ; electrochemistry ; Electrodes ; electrolytes ; Exact sciences and technology ; General and physical chemistry ; groundwater ; Hematite ; hysteresis ; ionic strength ; Mathematical models ; oxides ; Point of zero potential ; Point of zero salt effect ; Rutile ; Silver bromide ; Silver chloride ; Silver halides ; Single crystals ; Single-crystal electrode ; soil ; solubility ; sorption ; Surface physical chemistry ; Surface potential ; titration</subject><ispartof>Journal of colloid and interface science, 2012-03, Vol.370 (1), p.139-143</ispartof><rights>2012 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-8b56fd3d27feabdd61094b50eb78c70423c1c089db24336d3ee279e843a6e9ba3</citedby><cites>FETCH-LOGICAL-c442t-8b56fd3d27feabdd61094b50eb78c70423c1c089db24336d3ee279e843a6e9ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25697457$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22277245$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zarzycki, Piotr</creatorcontrib><creatorcontrib>Preočanin, Tajana</creatorcontrib><title>Point of zero potential of single-crystal electrode/inert electrolyte interface</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>[Display omitted] ► Electrostatic characteristics of specific crystal faces from non-hysteretic titration. ► Surface reconstruction increases the number of sites with high proton affinity. ► Halide ions preferentially adsorbed on silver halide surfaces. Most of the environmentally important processes occur at the specific hydrated mineral faces. Their rates and mechanisms are in part controlled by the interfacial electrostatics, which can be quantitatively described by the point of zero potential (PZP). Unfortunately, the PZP value of specific crystal face is very difficult to be experimentally determined. Here we show that PZP can be extracted from a single-crystal electrode potentiometric titration, assuming the stable electrochemical cell resistivity and lack of specific electrolyte ions sorption. Our method is based on determining a common intersection point of the electrochemical cell electromotive force at various ionic strengths, and it is illustrated for a few selected surfaces of rutile, hematite, silver chloride, and bromide monocrystals. In the case of metal oxides, we have observed the higher PZP values than those theoretically predicted using the MultiSite Complexation Model (MUSIC), that is, 8.4 for (001) hematite (MUSIC-predicted ∼6), 8.7 for (110) rutile (MUSIC-predicted ∼6), and about 7 for (001) rutile (MUSIC-predicted 6.6). In the case of silver halides, the order of estimated PZP values (6.4 for AgCl&lt;6.5 for AgBr) agrees well with sequence estimated from the silver halide solubility products; however, the halide anions (Cl−, Br−) are attracted toward surface much stronger than the Ag+ cations. The observed PZPs sequence and strong anions affinity toward silver halide surface can be correlated with ions hydration energies. Presented approach is the complementary one to the hysteresis method reported previously [P. Zarzycki, S. Chatman, T. Preočanin, K.M. Rosso, Langmuir 27 (2011) 7986–7990]. A unique experimental characterization of specific crystal faces provided by these two methods is essential in deeper understanding of environmentally important processes, including migration of heavy and radioactive ions in soils and groundwaters.</description><subject>Anions</subject><subject>cations</subject><subject>Chemistry</subject><subject>Common intersection point</subject><subject>Electrochemical cells</subject><subject>electrochemistry</subject><subject>Electrodes</subject><subject>electrolytes</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>groundwater</subject><subject>Hematite</subject><subject>hysteresis</subject><subject>ionic strength</subject><subject>Mathematical models</subject><subject>oxides</subject><subject>Point of zero potential</subject><subject>Point of zero salt effect</subject><subject>Rutile</subject><subject>Silver bromide</subject><subject>Silver chloride</subject><subject>Silver halides</subject><subject>Single crystals</subject><subject>Single-crystal electrode</subject><subject>soil</subject><subject>solubility</subject><subject>sorption</subject><subject>Surface physical chemistry</subject><subject>Surface potential</subject><subject>titration</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kU2LFDEQhoMo7jj6BzzoXEQv3ZtU0kkH9iKLX7Cwgu45pJPqJUNPZ0wywvjrTTOze9xTSPHUW8VThLxltGWUycttu3Uht0AZaxm0VPbPyIpR3TWKUf6crCgF1mil1QV5lfOWVrDr9EtyAQBKgehW5PZnDHPZxHHzD1Pc7GPBuQQ7LZUc5vsJG5eOudQKTuhKih4vw4ypPPynY8FNzcA0WoevyYvRThnfnN81ufv65ff19-bm9tuP6883jRMCStMPnRw996BGtIP3sq4tho7ioHqnqADumKO99gMIzqXniKA09oJbiXqwfE0-nnL3Kf45YC5mF7LDabIzxkM2GiiAFrVhTT49SVaVWlYXilcUTqhLMeeEo9mnsLPpWKGFk2ZrFuVmUW4YmKq8Nr075x-GHfrHlgfHFfhwBmx2dhqTnZeMR66TWi3j1-T9iRttNPY-VebuV50kKaVKCViIqxOB1ezfgMlkF3B26EOqtzA-hqc2_Q-_J6i7</recordid><startdate>20120315</startdate><enddate>20120315</enddate><creator>Zarzycki, Piotr</creator><creator>Preočanin, Tajana</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20120315</creationdate><title>Point of zero potential of single-crystal electrode/inert electrolyte interface</title><author>Zarzycki, Piotr ; Preočanin, Tajana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-8b56fd3d27feabdd61094b50eb78c70423c1c089db24336d3ee279e843a6e9ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Anions</topic><topic>cations</topic><topic>Chemistry</topic><topic>Common intersection point</topic><topic>Electrochemical cells</topic><topic>electrochemistry</topic><topic>Electrodes</topic><topic>electrolytes</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>groundwater</topic><topic>Hematite</topic><topic>hysteresis</topic><topic>ionic strength</topic><topic>Mathematical models</topic><topic>oxides</topic><topic>Point of zero potential</topic><topic>Point of zero salt effect</topic><topic>Rutile</topic><topic>Silver bromide</topic><topic>Silver chloride</topic><topic>Silver halides</topic><topic>Single crystals</topic><topic>Single-crystal electrode</topic><topic>soil</topic><topic>solubility</topic><topic>sorption</topic><topic>Surface physical chemistry</topic><topic>Surface potential</topic><topic>titration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zarzycki, Piotr</creatorcontrib><creatorcontrib>Preočanin, Tajana</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zarzycki, Piotr</au><au>Preočanin, Tajana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Point of zero potential of single-crystal electrode/inert electrolyte interface</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2012-03-15</date><risdate>2012</risdate><volume>370</volume><issue>1</issue><spage>139</spage><epage>143</epage><pages>139-143</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><coden>JCISA5</coden><abstract>[Display omitted] ► Electrostatic characteristics of specific crystal faces from non-hysteretic titration. ► Surface reconstruction increases the number of sites with high proton affinity. ► Halide ions preferentially adsorbed on silver halide surfaces. Most of the environmentally important processes occur at the specific hydrated mineral faces. Their rates and mechanisms are in part controlled by the interfacial electrostatics, which can be quantitatively described by the point of zero potential (PZP). Unfortunately, the PZP value of specific crystal face is very difficult to be experimentally determined. Here we show that PZP can be extracted from a single-crystal electrode potentiometric titration, assuming the stable electrochemical cell resistivity and lack of specific electrolyte ions sorption. Our method is based on determining a common intersection point of the electrochemical cell electromotive force at various ionic strengths, and it is illustrated for a few selected surfaces of rutile, hematite, silver chloride, and bromide monocrystals. In the case of metal oxides, we have observed the higher PZP values than those theoretically predicted using the MultiSite Complexation Model (MUSIC), that is, 8.4 for (001) hematite (MUSIC-predicted ∼6), 8.7 for (110) rutile (MUSIC-predicted ∼6), and about 7 for (001) rutile (MUSIC-predicted 6.6). In the case of silver halides, the order of estimated PZP values (6.4 for AgCl&lt;6.5 for AgBr) agrees well with sequence estimated from the silver halide solubility products; however, the halide anions (Cl−, Br−) are attracted toward surface much stronger than the Ag+ cations. The observed PZPs sequence and strong anions affinity toward silver halide surface can be correlated with ions hydration energies. Presented approach is the complementary one to the hysteresis method reported previously [P. Zarzycki, S. Chatman, T. Preočanin, K.M. Rosso, Langmuir 27 (2011) 7986–7990]. A unique experimental characterization of specific crystal faces provided by these two methods is essential in deeper understanding of environmentally important processes, including migration of heavy and radioactive ions in soils and groundwaters.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>22277245</pmid><doi>10.1016/j.jcis.2011.12.068</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2012-03, Vol.370 (1), p.139-143
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_920229484
source ScienceDirect Journals
subjects Anions
cations
Chemistry
Common intersection point
Electrochemical cells
electrochemistry
Electrodes
electrolytes
Exact sciences and technology
General and physical chemistry
groundwater
Hematite
hysteresis
ionic strength
Mathematical models
oxides
Point of zero potential
Point of zero salt effect
Rutile
Silver bromide
Silver chloride
Silver halides
Single crystals
Single-crystal electrode
soil
solubility
sorption
Surface physical chemistry
Surface potential
titration
title Point of zero potential of single-crystal electrode/inert electrolyte interface
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A33%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Point%20of%20zero%20potential%20of%20single-crystal%20electrode/inert%20electrolyte%20interface&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Zarzycki,%20Piotr&rft.date=2012-03-15&rft.volume=370&rft.issue=1&rft.spage=139&rft.epage=143&rft.pages=139-143&rft.issn=0021-9797&rft.eissn=1095-7103&rft.coden=JCISA5&rft_id=info:doi/10.1016/j.jcis.2011.12.068&rft_dat=%3Cproquest_cross%3E920229484%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c442t-8b56fd3d27feabdd61094b50eb78c70423c1c089db24336d3ee279e843a6e9ba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1019624573&rft_id=info:pmid/22277245&rfr_iscdi=true