Loading…
Molecular Scale Conductance Photoswitching in Engineered Bacteriorhodopsin
Bacteriorhodopsin (BR) is a robust light-driven proton pump embedded in the purple membrane of the extremophilic archae Halobacterium salinarium. Its photoactivity remains in the dry state, making BR of significant interest for nanotechnological use. Here, in a novel configuration, BR was depleted f...
Saved in:
Published in: | Nano letters 2012-02, Vol.12 (2), p.899-903 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Bacteriorhodopsin (BR) is a robust light-driven proton pump embedded in the purple membrane of the extremophilic archae Halobacterium salinarium. Its photoactivity remains in the dry state, making BR of significant interest for nanotechnological use. Here, in a novel configuration, BR was depleted from most of its endogenous lipids and covalently and asymmetrically anchored onto a gold electrode through a strategically located and highly responsive cysteine mutation; BR has no indigenous cysteines. Chemisorption on gold was characterized by surface plasmon resonance, reductive striping voltammetry, ellipsometry, and atomic force microscopy (AFM). For the first time, the conductance of isolated protein trimers, intimately probed by conducting AFM, was reproducibly and reversibly switched under wavelength-specific conditions (mean resistance of 39 ± 12 MΩ under illumination, 137 ± 18 MΩ in the dark), demonstrating a surface stability that is relevant to potential nanodevice applications. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/nl203965w |