Loading…

Apples and Oranges? Interpretations of Risk Adjustment and Instrumental Variable Estimates of Intended Treatment Effects Using Observational Data

Instrumental variable (IV) and risk adjustment (RA) estimators, including propensity score adjustments, are both used to alleviate confounding problems in nonexperimental studies on treatment effects, but it is not clear how estimates based on these 2 approaches compare. Methodological consideration...

Full description

Saved in:
Bibliographic Details
Published in:American journal of epidemiology 2012-01, Vol.175 (1), p.60-65
Main Authors: Fang, Gang, Brooks, John M., Chrischilles, Elizabeth A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c441t-2b69b391c5d51039dbe0636e671887f8f925e190bafd1bc753dc772447e2cb5a3
cites cdi_FETCH-LOGICAL-c441t-2b69b391c5d51039dbe0636e671887f8f925e190bafd1bc753dc772447e2cb5a3
container_end_page 65
container_issue 1
container_start_page 60
container_title American journal of epidemiology
container_volume 175
creator Fang, Gang
Brooks, John M.
Chrischilles, Elizabeth A.
description Instrumental variable (IV) and risk adjustment (RA) estimators, including propensity score adjustments, are both used to alleviate confounding problems in nonexperimental studies on treatment effects, but it is not clear how estimates based on these 2 approaches compare. Methodological considerations have shown that IV and RA estimators yield estimates of distinct types of causal treatment effects regardless of confounding problems. Many investigators have neglected these distinctions. In this paper, the authors use 3 schematic models to explain visually the relations between IV and RA estimates of intended treatment effects as demonstrated in the methodological studies. When treatment effects are homogeneous across a study population or when treatment effects are heterogeneous across the study population but treatment decisions are unrelated to the treatment effects, RA and IV estimates should be equivalent when the respective assumptions are met. In contrast, when treatment effects are heterogeneous and treatment decisions are related to the treatment effects, RA estimates of treatment effect can asymptotically differ from IV estimates, but both are correct even when the respective assumptions are met. Appropriate interpretations of IV or RA estimates can be facilitated by developing conceptual models related to treatment choice and treatment effect heterogeneity prior to analyses.
doi_str_mv 10.1093/aje/kwr283
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_920787751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/aje/kwr283</oup_id><sourcerecordid>2570631911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-2b69b391c5d51039dbe0636e671887f8f925e190bafd1bc753dc772447e2cb5a3</originalsourceid><addsrcrecordid>eNqF0dFqFDEUBuAgil2rNz6ABEEEYdokM0kmV7LU1S4UFqT1dkgyZ8psZzNjTkbxMXxjZ3bXFrywVyHwnf-Q_IS85uyMM5Of2y2c3_2MosyfkAUvtMqUkOopWTDGRGaEEifkBeKWMc6NZM_JiRCslEqoBfm9HIYOkNpQ00204RbwI12HBHGIkGxq-4C0b-jXFu_ost6OmHYQ0t6vA6Y4zlfb0W82ttZ1QFeY2p1NsB-bk0INNb2OYA-Tq6YBn5DeYBtu6cYhxB_7PVPIJ5vsS_KssR3Cq-N5Sm4-r64vLrOrzZf1xfIq80XBUyacMi433Mtacpab2gFTuQKleVnqpmyMkMANc7apufNa5rXXWhSFBuGdtPkpeX_IHWL_fQRM1a5FD11nA_QjVkYwXWot-eOSC1UIpvQk3_4jt_0Yp5fNSBteGjHHfTggH3vECE01xOnH4q-Ks2outJoKrQ6FTvjNMXF0O6jv6d8GJ_DuCCx62zVTh77FBydlnpfCPLh-HP638A9DC7dc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>917918921</pqid></control><display><type>article</type><title>Apples and Oranges? Interpretations of Risk Adjustment and Instrumental Variable Estimates of Intended Treatment Effects Using Observational Data</title><source>Oxford Journals Online</source><creator>Fang, Gang ; Brooks, John M. ; Chrischilles, Elizabeth A.</creator><creatorcontrib>Fang, Gang ; Brooks, John M. ; Chrischilles, Elizabeth A.</creatorcontrib><description>Instrumental variable (IV) and risk adjustment (RA) estimators, including propensity score adjustments, are both used to alleviate confounding problems in nonexperimental studies on treatment effects, but it is not clear how estimates based on these 2 approaches compare. Methodological considerations have shown that IV and RA estimators yield estimates of distinct types of causal treatment effects regardless of confounding problems. Many investigators have neglected these distinctions. In this paper, the authors use 3 schematic models to explain visually the relations between IV and RA estimates of intended treatment effects as demonstrated in the methodological studies. When treatment effects are homogeneous across a study population or when treatment effects are heterogeneous across the study population but treatment decisions are unrelated to the treatment effects, RA and IV estimates should be equivalent when the respective assumptions are met. In contrast, when treatment effects are heterogeneous and treatment decisions are related to the treatment effects, RA estimates of treatment effect can asymptotically differ from IV estimates, but both are correct even when the respective assumptions are met. Appropriate interpretations of IV or RA estimates can be facilitated by developing conceptual models related to treatment choice and treatment effect heterogeneity prior to analyses.</description><identifier>ISSN: 0002-9262</identifier><identifier>EISSN: 1476-6256</identifier><identifier>DOI: 10.1093/aje/kwr283</identifier><identifier>PMID: 22085626</identifier><identifier>CODEN: AJEPAS</identifier><language>eng</language><publisher>Cary, NC: Oxford University Press</publisher><subject>Biological and medical sciences ; Causality ; Confounding Factors (Epidemiology) ; Data Interpretation, Statistical ; Effect Modifier, Epidemiologic ; Epidemiology ; Estimating techniques ; Experiments ; General aspects ; Medical sciences ; Medical treatment ; Miscellaneous ; Models, Statistical ; Observation ; Propensity Score ; Public health. Hygiene ; Public health. Hygiene-occupational medicine ; Risk Adjustment</subject><ispartof>American journal of epidemiology, 2012-01, Vol.175 (1), p.60-65</ispartof><rights>American Journal of Epidemiology © The Author 2011. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2011</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Oxford Publishing Limited(England) Jan 1, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-2b69b391c5d51039dbe0636e671887f8f925e190bafd1bc753dc772447e2cb5a3</citedby><cites>FETCH-LOGICAL-c441t-2b69b391c5d51039dbe0636e671887f8f925e190bafd1bc753dc772447e2cb5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25533829$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22085626$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fang, Gang</creatorcontrib><creatorcontrib>Brooks, John M.</creatorcontrib><creatorcontrib>Chrischilles, Elizabeth A.</creatorcontrib><title>Apples and Oranges? Interpretations of Risk Adjustment and Instrumental Variable Estimates of Intended Treatment Effects Using Observational Data</title><title>American journal of epidemiology</title><addtitle>Am J Epidemiol</addtitle><description>Instrumental variable (IV) and risk adjustment (RA) estimators, including propensity score adjustments, are both used to alleviate confounding problems in nonexperimental studies on treatment effects, but it is not clear how estimates based on these 2 approaches compare. Methodological considerations have shown that IV and RA estimators yield estimates of distinct types of causal treatment effects regardless of confounding problems. Many investigators have neglected these distinctions. In this paper, the authors use 3 schematic models to explain visually the relations between IV and RA estimates of intended treatment effects as demonstrated in the methodological studies. When treatment effects are homogeneous across a study population or when treatment effects are heterogeneous across the study population but treatment decisions are unrelated to the treatment effects, RA and IV estimates should be equivalent when the respective assumptions are met. In contrast, when treatment effects are heterogeneous and treatment decisions are related to the treatment effects, RA estimates of treatment effect can asymptotically differ from IV estimates, but both are correct even when the respective assumptions are met. Appropriate interpretations of IV or RA estimates can be facilitated by developing conceptual models related to treatment choice and treatment effect heterogeneity prior to analyses.</description><subject>Biological and medical sciences</subject><subject>Causality</subject><subject>Confounding Factors (Epidemiology)</subject><subject>Data Interpretation, Statistical</subject><subject>Effect Modifier, Epidemiologic</subject><subject>Epidemiology</subject><subject>Estimating techniques</subject><subject>Experiments</subject><subject>General aspects</subject><subject>Medical sciences</subject><subject>Medical treatment</subject><subject>Miscellaneous</subject><subject>Models, Statistical</subject><subject>Observation</subject><subject>Propensity Score</subject><subject>Public health. Hygiene</subject><subject>Public health. Hygiene-occupational medicine</subject><subject>Risk Adjustment</subject><issn>0002-9262</issn><issn>1476-6256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqF0dFqFDEUBuAgil2rNz6ABEEEYdokM0kmV7LU1S4UFqT1dkgyZ8psZzNjTkbxMXxjZ3bXFrywVyHwnf-Q_IS85uyMM5Of2y2c3_2MosyfkAUvtMqUkOopWTDGRGaEEifkBeKWMc6NZM_JiRCslEqoBfm9HIYOkNpQ00204RbwI12HBHGIkGxq-4C0b-jXFu_ost6OmHYQ0t6vA6Y4zlfb0W82ttZ1QFeY2p1NsB-bk0INNb2OYA-Tq6YBn5DeYBtu6cYhxB_7PVPIJ5vsS_KssR3Cq-N5Sm4-r64vLrOrzZf1xfIq80XBUyacMi433Mtacpab2gFTuQKleVnqpmyMkMANc7apufNa5rXXWhSFBuGdtPkpeX_IHWL_fQRM1a5FD11nA_QjVkYwXWot-eOSC1UIpvQk3_4jt_0Yp5fNSBteGjHHfTggH3vECE01xOnH4q-Ks2outJoKrQ6FTvjNMXF0O6jv6d8GJ_DuCCx62zVTh77FBydlnpfCPLh-HP638A9DC7dc</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Fang, Gang</creator><creator>Brooks, John M.</creator><creator>Chrischilles, Elizabeth A.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7T2</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><scope>7U1</scope></search><sort><creationdate>20120101</creationdate><title>Apples and Oranges? Interpretations of Risk Adjustment and Instrumental Variable Estimates of Intended Treatment Effects Using Observational Data</title><author>Fang, Gang ; Brooks, John M. ; Chrischilles, Elizabeth A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-2b69b391c5d51039dbe0636e671887f8f925e190bafd1bc753dc772447e2cb5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biological and medical sciences</topic><topic>Causality</topic><topic>Confounding Factors (Epidemiology)</topic><topic>Data Interpretation, Statistical</topic><topic>Effect Modifier, Epidemiologic</topic><topic>Epidemiology</topic><topic>Estimating techniques</topic><topic>Experiments</topic><topic>General aspects</topic><topic>Medical sciences</topic><topic>Medical treatment</topic><topic>Miscellaneous</topic><topic>Models, Statistical</topic><topic>Observation</topic><topic>Propensity Score</topic><topic>Public health. Hygiene</topic><topic>Public health. Hygiene-occupational medicine</topic><topic>Risk Adjustment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Gang</creatorcontrib><creatorcontrib>Brooks, John M.</creatorcontrib><creatorcontrib>Chrischilles, Elizabeth A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><collection>Risk Abstracts</collection><jtitle>American journal of epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Gang</au><au>Brooks, John M.</au><au>Chrischilles, Elizabeth A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Apples and Oranges? Interpretations of Risk Adjustment and Instrumental Variable Estimates of Intended Treatment Effects Using Observational Data</atitle><jtitle>American journal of epidemiology</jtitle><addtitle>Am J Epidemiol</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>175</volume><issue>1</issue><spage>60</spage><epage>65</epage><pages>60-65</pages><issn>0002-9262</issn><eissn>1476-6256</eissn><coden>AJEPAS</coden><abstract>Instrumental variable (IV) and risk adjustment (RA) estimators, including propensity score adjustments, are both used to alleviate confounding problems in nonexperimental studies on treatment effects, but it is not clear how estimates based on these 2 approaches compare. Methodological considerations have shown that IV and RA estimators yield estimates of distinct types of causal treatment effects regardless of confounding problems. Many investigators have neglected these distinctions. In this paper, the authors use 3 schematic models to explain visually the relations between IV and RA estimates of intended treatment effects as demonstrated in the methodological studies. When treatment effects are homogeneous across a study population or when treatment effects are heterogeneous across the study population but treatment decisions are unrelated to the treatment effects, RA and IV estimates should be equivalent when the respective assumptions are met. In contrast, when treatment effects are heterogeneous and treatment decisions are related to the treatment effects, RA estimates of treatment effect can asymptotically differ from IV estimates, but both are correct even when the respective assumptions are met. Appropriate interpretations of IV or RA estimates can be facilitated by developing conceptual models related to treatment choice and treatment effect heterogeneity prior to analyses.</abstract><cop>Cary, NC</cop><pub>Oxford University Press</pub><pmid>22085626</pmid><doi>10.1093/aje/kwr283</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9262
ispartof American journal of epidemiology, 2012-01, Vol.175 (1), p.60-65
issn 0002-9262
1476-6256
language eng
recordid cdi_proquest_miscellaneous_920787751
source Oxford Journals Online
subjects Biological and medical sciences
Causality
Confounding Factors (Epidemiology)
Data Interpretation, Statistical
Effect Modifier, Epidemiologic
Epidemiology
Estimating techniques
Experiments
General aspects
Medical sciences
Medical treatment
Miscellaneous
Models, Statistical
Observation
Propensity Score
Public health. Hygiene
Public health. Hygiene-occupational medicine
Risk Adjustment
title Apples and Oranges? Interpretations of Risk Adjustment and Instrumental Variable Estimates of Intended Treatment Effects Using Observational Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A50%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Apples%20and%20Oranges?%20Interpretations%20of%20Risk%20Adjustment%20and%20Instrumental%20Variable%20Estimates%20of%20Intended%20Treatment%20Effects%20Using%20Observational%20Data&rft.jtitle=American%20journal%20of%20epidemiology&rft.au=Fang,%20Gang&rft.date=2012-01-01&rft.volume=175&rft.issue=1&rft.spage=60&rft.epage=65&rft.pages=60-65&rft.issn=0002-9262&rft.eissn=1476-6256&rft.coden=AJEPAS&rft_id=info:doi/10.1093/aje/kwr283&rft_dat=%3Cproquest_cross%3E2570631911%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c441t-2b69b391c5d51039dbe0636e671887f8f925e190bafd1bc753dc772447e2cb5a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=917918921&rft_id=info:pmid/22085626&rft_oup_id=10.1093/aje/kwr283&rfr_iscdi=true