Loading…
The Luminosity Profile and Structural Parameters of the Andromeda Galaxy
We have constructed an extended composite luminosity profile for the Andromeda galaxy, M31, and have decomposed it into three basic luminous structural components: a bulge, a disk, and a halo. The dust-free Spitzer/Infrared Array Camera (IRAC) imaging and extended spatial coverage of ground-based op...
Saved in:
Published in: | The Astrophysical journal 2011-09, Vol.739 (1), p.20-jQuery1323903360505='48' |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-c86a913059274f59365a9daba1cf0252a2acf9afb28eb716ed163f943f7b1dfc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-c86a913059274f59365a9daba1cf0252a2acf9afb28eb716ed163f943f7b1dfc3 |
container_end_page | jQuery1323903360505='48' |
container_issue | 1 |
container_start_page | 20 |
container_title | The Astrophysical journal |
container_volume | 739 |
creator | Courteau, Stéphane Widrow, Lawrence M McDonald, Michael Guhathakurta, Puragra Gilbert, Karoline M Zhu, Yucong Beaton, Rachael Lynn Majewski, Steven R |
description | We have constructed an extended composite luminosity profile for the Andromeda galaxy, M31, and have decomposed it into three basic luminous structural components: a bulge, a disk, and a halo. The dust-free Spitzer/Infrared Array Camera (IRAC) imaging and extended spatial coverage of ground-based optical imaging and deep star counts allow us to map M31's structure from its center to 22 kpc along the major axis. We apply, and address the limitations of, different decomposition methods for the one-dimensional luminosity profiles and two-dimensional images. These methods include nonlinear least-squares and Bayesian Monte Carlo Markov chain analyses. The basic photometric model for M31 has a Sersic bulge with shape index n 2.2 ? .3 and effective radius Re = 1.0 ? 0.2 kpc, and a dust-free exponential disk of scale length Rd = 5.3 ? .5 kpc; the parameter errors reflect the range between different decomposition methods. Despite model covariances, the convergence of solutions based on different methods and current data suggests a stable set of structural parameters. The ellipticities ( = 1 -- b/a) of the bulge and the disk from the IRAC image are 0.37 ? 0.03 and 0.73 ? 0.03, respectively. The bulge parameter n is rather insensitive to bandpass effects and its value (2.2) suggests a first rapid formation via mergers followed by secular growth from the disk. The M31 halo has a two-dimensional power-law index -- 2.5 ? 0.2 (or --3.5 in three-dimensional), comparable to that of the Milky Way. We find that the M31 bulge light is mostly dominant over the range R min 1.2 kpc. The disk takes over in the range 1.2 kpc R min 9 kpc, whereas the halo dominates at R min 9 kpc. The stellar nucleus, bulge, disk, and halo components each contribute roughly 0.05%, 23%, 73%, and 4% of the total light of M31 out to 200 kpc along the minor axis. Nominal errors for the structural parameters of the M31 bulge, disk, and halo amount to 20%. If M31 and the Milky Way are at all typical, faint stellar halos should be routinely detected in galaxy surveys reaching below Delta *m i 27 mag arcsec--2. We stress that our results rely on this photometric analysis alone. Structural parameters may change when other fundamental constraints, such as those provided by abundance gradients and stellar kinematics, are considered simultaneously. |
doi_str_mv | 10.1088/0004-637X/739/1/20 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_920789999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>920789999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-c86a913059274f59365a9daba1cf0252a2acf9afb28eb716ed163f943f7b1dfc3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKd_wKvciHhRm4-2aS6H6CYMHDjBu3CaJlhpm5q04P69LRu7GXhuwiHP-3J4ELql5JGSPI8JIUmUcfEZCy5jGjNyhmY05XmU8FSco9kRuERXIXxPK5NyhlbbL4PXQ1O1LlT9Dm-8s1VtMLQlfu_9oPvBQ4034KExvfEBO4v7MbNoS-8aUwJeQg2_u2t0YaEO5ubwztHHy_P2aRWt35avT4t1pNOE9JHOM5CUk1QykdhU8iwFWUIBVFvCUgYMtJVgC5abQtDMlDTjVibcioKWVvM5ut_3dt79DCb0qqmCNnUNrXFDUJIRkctxRpLtSe1dCN5Y1fmqAb9TlKjJmposqEmKGq0pqhgZQ3eHeggaauuh1VU4JlmSMpIlYuQe9lzluuPvaZ_qSjuy0Sn7zw1_QVmHsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920789999</pqid></control><display><type>article</type><title>The Luminosity Profile and Structural Parameters of the Andromeda Galaxy</title><source>EZB Electronic Journals Library</source><creator>Courteau, Stéphane ; Widrow, Lawrence M ; McDonald, Michael ; Guhathakurta, Puragra ; Gilbert, Karoline M ; Zhu, Yucong ; Beaton, Rachael Lynn ; Majewski, Steven R</creator><creatorcontrib>Courteau, Stéphane ; Widrow, Lawrence M ; McDonald, Michael ; Guhathakurta, Puragra ; Gilbert, Karoline M ; Zhu, Yucong ; Beaton, Rachael Lynn ; Majewski, Steven R</creatorcontrib><description>We have constructed an extended composite luminosity profile for the Andromeda galaxy, M31, and have decomposed it into three basic luminous structural components: a bulge, a disk, and a halo. The dust-free Spitzer/Infrared Array Camera (IRAC) imaging and extended spatial coverage of ground-based optical imaging and deep star counts allow us to map M31's structure from its center to 22 kpc along the major axis. We apply, and address the limitations of, different decomposition methods for the one-dimensional luminosity profiles and two-dimensional images. These methods include nonlinear least-squares and Bayesian Monte Carlo Markov chain analyses. The basic photometric model for M31 has a Sersic bulge with shape index n 2.2 ? .3 and effective radius Re = 1.0 ? 0.2 kpc, and a dust-free exponential disk of scale length Rd = 5.3 ? .5 kpc; the parameter errors reflect the range between different decomposition methods. Despite model covariances, the convergence of solutions based on different methods and current data suggests a stable set of structural parameters. The ellipticities ( = 1 -- b/a) of the bulge and the disk from the IRAC image are 0.37 ? 0.03 and 0.73 ? 0.03, respectively. The bulge parameter n is rather insensitive to bandpass effects and its value (2.2) suggests a first rapid formation via mergers followed by secular growth from the disk. The M31 halo has a two-dimensional power-law index -- 2.5 ? 0.2 (or --3.5 in three-dimensional), comparable to that of the Milky Way. We find that the M31 bulge light is mostly dominant over the range R min 1.2 kpc. The disk takes over in the range 1.2 kpc R min 9 kpc, whereas the halo dominates at R min 9 kpc. The stellar nucleus, bulge, disk, and halo components each contribute roughly 0.05%, 23%, 73%, and 4% of the total light of M31 out to 200 kpc along the minor axis. Nominal errors for the structural parameters of the M31 bulge, disk, and halo amount to 20%. If M31 and the Milky Way are at all typical, faint stellar halos should be routinely detected in galaxy surveys reaching below Delta *m i 27 mag arcsec--2. We stress that our results rely on this photometric analysis alone. Structural parameters may change when other fundamental constraints, such as those provided by abundance gradients and stellar kinematics, are considered simultaneously.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1088/0004-637X/739/1/20</identifier><identifier>CODEN: ASJOAB</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Astronomy ; Earth, ocean, space ; Exact sciences and technology</subject><ispartof>The Astrophysical journal, 2011-09, Vol.739 (1), p.20-jQuery1323903360505='48'</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-c86a913059274f59365a9daba1cf0252a2acf9afb28eb716ed163f943f7b1dfc3</citedby><cites>FETCH-LOGICAL-c540t-c86a913059274f59365a9daba1cf0252a2acf9afb28eb716ed163f943f7b1dfc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24520647$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Courteau, Stéphane</creatorcontrib><creatorcontrib>Widrow, Lawrence M</creatorcontrib><creatorcontrib>McDonald, Michael</creatorcontrib><creatorcontrib>Guhathakurta, Puragra</creatorcontrib><creatorcontrib>Gilbert, Karoline M</creatorcontrib><creatorcontrib>Zhu, Yucong</creatorcontrib><creatorcontrib>Beaton, Rachael Lynn</creatorcontrib><creatorcontrib>Majewski, Steven R</creatorcontrib><title>The Luminosity Profile and Structural Parameters of the Andromeda Galaxy</title><title>The Astrophysical journal</title><description>We have constructed an extended composite luminosity profile for the Andromeda galaxy, M31, and have decomposed it into three basic luminous structural components: a bulge, a disk, and a halo. The dust-free Spitzer/Infrared Array Camera (IRAC) imaging and extended spatial coverage of ground-based optical imaging and deep star counts allow us to map M31's structure from its center to 22 kpc along the major axis. We apply, and address the limitations of, different decomposition methods for the one-dimensional luminosity profiles and two-dimensional images. These methods include nonlinear least-squares and Bayesian Monte Carlo Markov chain analyses. The basic photometric model for M31 has a Sersic bulge with shape index n 2.2 ? .3 and effective radius Re = 1.0 ? 0.2 kpc, and a dust-free exponential disk of scale length Rd = 5.3 ? .5 kpc; the parameter errors reflect the range between different decomposition methods. Despite model covariances, the convergence of solutions based on different methods and current data suggests a stable set of structural parameters. The ellipticities ( = 1 -- b/a) of the bulge and the disk from the IRAC image are 0.37 ? 0.03 and 0.73 ? 0.03, respectively. The bulge parameter n is rather insensitive to bandpass effects and its value (2.2) suggests a first rapid formation via mergers followed by secular growth from the disk. The M31 halo has a two-dimensional power-law index -- 2.5 ? 0.2 (or --3.5 in three-dimensional), comparable to that of the Milky Way. We find that the M31 bulge light is mostly dominant over the range R min 1.2 kpc. The disk takes over in the range 1.2 kpc R min 9 kpc, whereas the halo dominates at R min 9 kpc. The stellar nucleus, bulge, disk, and halo components each contribute roughly 0.05%, 23%, 73%, and 4% of the total light of M31 out to 200 kpc along the minor axis. Nominal errors for the structural parameters of the M31 bulge, disk, and halo amount to 20%. If M31 and the Milky Way are at all typical, faint stellar halos should be routinely detected in galaxy surveys reaching below Delta *m i 27 mag arcsec--2. We stress that our results rely on this photometric analysis alone. Structural parameters may change when other fundamental constraints, such as those provided by abundance gradients and stellar kinematics, are considered simultaneously.</description><subject>Astronomy</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOKd_wKvciHhRm4-2aS6H6CYMHDjBu3CaJlhpm5q04P69LRu7GXhuwiHP-3J4ELql5JGSPI8JIUmUcfEZCy5jGjNyhmY05XmU8FSco9kRuERXIXxPK5NyhlbbL4PXQ1O1LlT9Dm-8s1VtMLQlfu_9oPvBQ4034KExvfEBO4v7MbNoS-8aUwJeQg2_u2t0YaEO5ubwztHHy_P2aRWt35avT4t1pNOE9JHOM5CUk1QykdhU8iwFWUIBVFvCUgYMtJVgC5abQtDMlDTjVibcioKWVvM5ut_3dt79DCb0qqmCNnUNrXFDUJIRkctxRpLtSe1dCN5Y1fmqAb9TlKjJmposqEmKGq0pqhgZQ3eHeggaauuh1VU4JlmSMpIlYuQe9lzluuPvaZ_qSjuy0Sn7zw1_QVmHsA</recordid><startdate>20110920</startdate><enddate>20110920</enddate><creator>Courteau, Stéphane</creator><creator>Widrow, Lawrence M</creator><creator>McDonald, Michael</creator><creator>Guhathakurta, Puragra</creator><creator>Gilbert, Karoline M</creator><creator>Zhu, Yucong</creator><creator>Beaton, Rachael Lynn</creator><creator>Majewski, Steven R</creator><general>IOP Publishing</general><general>IOP</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20110920</creationdate><title>The Luminosity Profile and Structural Parameters of the Andromeda Galaxy</title><author>Courteau, Stéphane ; Widrow, Lawrence M ; McDonald, Michael ; Guhathakurta, Puragra ; Gilbert, Karoline M ; Zhu, Yucong ; Beaton, Rachael Lynn ; Majewski, Steven R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-c86a913059274f59365a9daba1cf0252a2acf9afb28eb716ed163f943f7b1dfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Astronomy</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Courteau, Stéphane</creatorcontrib><creatorcontrib>Widrow, Lawrence M</creatorcontrib><creatorcontrib>McDonald, Michael</creatorcontrib><creatorcontrib>Guhathakurta, Puragra</creatorcontrib><creatorcontrib>Gilbert, Karoline M</creatorcontrib><creatorcontrib>Zhu, Yucong</creatorcontrib><creatorcontrib>Beaton, Rachael Lynn</creatorcontrib><creatorcontrib>Majewski, Steven R</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Courteau, Stéphane</au><au>Widrow, Lawrence M</au><au>McDonald, Michael</au><au>Guhathakurta, Puragra</au><au>Gilbert, Karoline M</au><au>Zhu, Yucong</au><au>Beaton, Rachael Lynn</au><au>Majewski, Steven R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Luminosity Profile and Structural Parameters of the Andromeda Galaxy</atitle><jtitle>The Astrophysical journal</jtitle><date>2011-09-20</date><risdate>2011</risdate><volume>739</volume><issue>1</issue><spage>20</spage><epage>jQuery1323903360505='48'</epage><pages>20-jQuery1323903360505='48'</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><coden>ASJOAB</coden><abstract>We have constructed an extended composite luminosity profile for the Andromeda galaxy, M31, and have decomposed it into three basic luminous structural components: a bulge, a disk, and a halo. The dust-free Spitzer/Infrared Array Camera (IRAC) imaging and extended spatial coverage of ground-based optical imaging and deep star counts allow us to map M31's structure from its center to 22 kpc along the major axis. We apply, and address the limitations of, different decomposition methods for the one-dimensional luminosity profiles and two-dimensional images. These methods include nonlinear least-squares and Bayesian Monte Carlo Markov chain analyses. The basic photometric model for M31 has a Sersic bulge with shape index n 2.2 ? .3 and effective radius Re = 1.0 ? 0.2 kpc, and a dust-free exponential disk of scale length Rd = 5.3 ? .5 kpc; the parameter errors reflect the range between different decomposition methods. Despite model covariances, the convergence of solutions based on different methods and current data suggests a stable set of structural parameters. The ellipticities ( = 1 -- b/a) of the bulge and the disk from the IRAC image are 0.37 ? 0.03 and 0.73 ? 0.03, respectively. The bulge parameter n is rather insensitive to bandpass effects and its value (2.2) suggests a first rapid formation via mergers followed by secular growth from the disk. The M31 halo has a two-dimensional power-law index -- 2.5 ? 0.2 (or --3.5 in three-dimensional), comparable to that of the Milky Way. We find that the M31 bulge light is mostly dominant over the range R min 1.2 kpc. The disk takes over in the range 1.2 kpc R min 9 kpc, whereas the halo dominates at R min 9 kpc. The stellar nucleus, bulge, disk, and halo components each contribute roughly 0.05%, 23%, 73%, and 4% of the total light of M31 out to 200 kpc along the minor axis. Nominal errors for the structural parameters of the M31 bulge, disk, and halo amount to 20%. If M31 and the Milky Way are at all typical, faint stellar halos should be routinely detected in galaxy surveys reaching below Delta *m i 27 mag arcsec--2. We stress that our results rely on this photometric analysis alone. Structural parameters may change when other fundamental constraints, such as those provided by abundance gradients and stellar kinematics, are considered simultaneously.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0004-637X/739/1/20</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2011-09, Vol.739 (1), p.20-jQuery1323903360505='48' |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_proquest_miscellaneous_920789999 |
source | EZB Electronic Journals Library |
subjects | Astronomy Earth, ocean, space Exact sciences and technology |
title | The Luminosity Profile and Structural Parameters of the Andromeda Galaxy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A05%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Luminosity%20Profile%20and%20Structural%20Parameters%20of%20the%20Andromeda%20Galaxy&rft.jtitle=The%20Astrophysical%20journal&rft.au=Courteau,%20St%C3%A9phane&rft.date=2011-09-20&rft.volume=739&rft.issue=1&rft.spage=20&rft.epage=jQuery1323903360505='48'&rft.pages=20-jQuery1323903360505='48'&rft.issn=0004-637X&rft.eissn=1538-4357&rft.coden=ASJOAB&rft_id=info:doi/10.1088/0004-637X/739/1/20&rft_dat=%3Cproquest_pasca%3E920789999%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-c86a913059274f59365a9daba1cf0252a2acf9afb28eb716ed163f943f7b1dfc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=920789999&rft_id=info:pmid/&rfr_iscdi=true |