Loading…

Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic

Cheung, W. W. L., Dunne, J., Sarmiento, J. L., and Pauly, D. 2011. Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. - ICES Journal of Marine Science, 68: 1008-1018. Previous global analyses projected shif...

Full description

Saved in:
Bibliographic Details
Published in:ICES journal of marine science 2011-07, Vol.68 (6), p.1008-1018
Main Authors: Cheung, William W. L., Dunne, John, Sarmiento, Jorge L., Pauly, Daniel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c345t-f682426252b8c2d2420361bc887de9d9c5b025de768a3bf1ab1517aa6f04f5d83
cites cdi_FETCH-LOGICAL-c345t-f682426252b8c2d2420361bc887de9d9c5b025de768a3bf1ab1517aa6f04f5d83
container_end_page 1018
container_issue 6
container_start_page 1008
container_title ICES journal of marine science
container_volume 68
creator Cheung, William W. L.
Dunne, John
Sarmiento, Jorge L.
Pauly, Daniel
description Cheung, W. W. L., Dunne, J., Sarmiento, J. L., and Pauly, D. 2011. Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. - ICES Journal of Marine Science, 68: 1008-1018. Previous global analyses projected shifts in species distributions and maximum fisheries catch potential across ocean basins by 2050 under the Special Report on Emission Scenarios (SRES) A1B. However, these studies did not account for the effects of changes in ocean biogeochemistry and phytoplankton community structure that affect fish and invertebrate distribution and productivity. This paper uses a dynamic bioclimatic envelope model that incorporates these factors to project distribution and maximum catch potential of 120 species of exploited demersal fish and invertebrates in the Northeast Atlantic. Using projections from the US National Oceanic and Atmospheric Administration's (NOAA) Geophysical Fluid Dynamics Laboratory Earth System Model (ESM2.1) under the SRES A1B, we project an average rate of distribution-centroid shift of 52 km decade−1 northwards and 5.1 m decade−1 deeper from 2005 to 2050. Ocean acidification and reduction in oxygen content reduce growth performance, increase the rate of range shift, and lower the estimated catch potentials (10-year average of 2050 relative to 2005) by 20-30% relative to simulations without considering these factors. Consideration of phytoplankton community structure may further reduce projected catch potentials by ∼10%. These results highlight the sensitivity of marine ecosystems to biogeochemical changes and the need to incorporate likely hypotheses of their biological and ecological effects in assessing climate change impacts.
doi_str_mv 10.1093/icesjms/fsr012
format article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_920796110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/icesjms/fsr012</oup_id><sourcerecordid>920796110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-f682426252b8c2d2420361bc887de9d9c5b025de768a3bf1ab1517aa6f04f5d83</originalsourceid><addsrcrecordid>eNqFUMtOwzAQjBBIlMKVs2-IQ1rbeR-rikelCi5wjhx7nbgkdrAdiX4Fv4yr9M5pRquZ2d2JonuCVwRXyVpxcIfBraWzmNCLaBGmWVzRsro88SyNE5JU19GNcweMcZHmeBH97rSH1jKvdIuAm7E7OmV60x4R0wKNPdNf3mgkjpoNijuktDdotOYA3INAA_tRwzQgqVwHVoFDnHneodF40F6xHk1agEW8VwPzgHjHdAshBfkO0JuxAZjzaOPDJq_4bXQlWe_g7ozL6PP56WP7Gu_fX3bbzT7mSZr5WOYlTWlOM9qUnIrAcZKThpdlIaASFc8aTDMBRV6ypJGENSQjBWO5xKnMRJkso4c5N7zyPYHz9aAchz5cAWZydUVxUeWE4KBczUpujXMWZD3a8Is91gTXp-Lrc_H1XHwwPM4GM43_af8APoWLqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920796110</pqid></control><display><type>article</type><title>Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic</title><source>Oxford Open Access Journals</source><creator>Cheung, William W. L. ; Dunne, John ; Sarmiento, Jorge L. ; Pauly, Daniel</creator><creatorcontrib>Cheung, William W. L. ; Dunne, John ; Sarmiento, Jorge L. ; Pauly, Daniel</creatorcontrib><description>Cheung, W. W. L., Dunne, J., Sarmiento, J. L., and Pauly, D. 2011. Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. - ICES Journal of Marine Science, 68: 1008-1018. Previous global analyses projected shifts in species distributions and maximum fisheries catch potential across ocean basins by 2050 under the Special Report on Emission Scenarios (SRES) A1B. However, these studies did not account for the effects of changes in ocean biogeochemistry and phytoplankton community structure that affect fish and invertebrate distribution and productivity. This paper uses a dynamic bioclimatic envelope model that incorporates these factors to project distribution and maximum catch potential of 120 species of exploited demersal fish and invertebrates in the Northeast Atlantic. Using projections from the US National Oceanic and Atmospheric Administration's (NOAA) Geophysical Fluid Dynamics Laboratory Earth System Model (ESM2.1) under the SRES A1B, we project an average rate of distribution-centroid shift of 52 km decade−1 northwards and 5.1 m decade−1 deeper from 2005 to 2050. Ocean acidification and reduction in oxygen content reduce growth performance, increase the rate of range shift, and lower the estimated catch potentials (10-year average of 2050 relative to 2005) by 20-30% relative to simulations without considering these factors. Consideration of phytoplankton community structure may further reduce projected catch potentials by ∼10%. These results highlight the sensitivity of marine ecosystems to biogeochemical changes and the need to incorporate likely hypotheses of their biological and ecological effects in assessing climate change impacts.</description><identifier>ISSN: 1054-3139</identifier><identifier>EISSN: 1095-9289</identifier><identifier>DOI: 10.1093/icesjms/fsr012</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Climate change ; Dynamical systems ; Dynamics ; Fisheries ; Marine ; Northeast ; Oceans ; Phytoplankton</subject><ispartof>ICES journal of marine science, 2011-07, Vol.68 (6), p.1008-1018</ispartof><rights>2011 International Council for the Exploration of the Sea. Published by Oxford Journals. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-f682426252b8c2d2420361bc887de9d9c5b025de768a3bf1ab1517aa6f04f5d83</citedby><cites>FETCH-LOGICAL-c345t-f682426252b8c2d2420361bc887de9d9c5b025de768a3bf1ab1517aa6f04f5d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,1599,27905,27906</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/icesjms/fsr012$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Cheung, William W. L.</creatorcontrib><creatorcontrib>Dunne, John</creatorcontrib><creatorcontrib>Sarmiento, Jorge L.</creatorcontrib><creatorcontrib>Pauly, Daniel</creatorcontrib><title>Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic</title><title>ICES journal of marine science</title><description>Cheung, W. W. L., Dunne, J., Sarmiento, J. L., and Pauly, D. 2011. Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. - ICES Journal of Marine Science, 68: 1008-1018. Previous global analyses projected shifts in species distributions and maximum fisheries catch potential across ocean basins by 2050 under the Special Report on Emission Scenarios (SRES) A1B. However, these studies did not account for the effects of changes in ocean biogeochemistry and phytoplankton community structure that affect fish and invertebrate distribution and productivity. This paper uses a dynamic bioclimatic envelope model that incorporates these factors to project distribution and maximum catch potential of 120 species of exploited demersal fish and invertebrates in the Northeast Atlantic. Using projections from the US National Oceanic and Atmospheric Administration's (NOAA) Geophysical Fluid Dynamics Laboratory Earth System Model (ESM2.1) under the SRES A1B, we project an average rate of distribution-centroid shift of 52 km decade−1 northwards and 5.1 m decade−1 deeper from 2005 to 2050. Ocean acidification and reduction in oxygen content reduce growth performance, increase the rate of range shift, and lower the estimated catch potentials (10-year average of 2050 relative to 2005) by 20-30% relative to simulations without considering these factors. Consideration of phytoplankton community structure may further reduce projected catch potentials by ∼10%. These results highlight the sensitivity of marine ecosystems to biogeochemical changes and the need to incorporate likely hypotheses of their biological and ecological effects in assessing climate change impacts.</description><subject>Climate change</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Fisheries</subject><subject>Marine</subject><subject>Northeast</subject><subject>Oceans</subject><subject>Phytoplankton</subject><issn>1054-3139</issn><issn>1095-9289</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQjBBIlMKVs2-IQ1rbeR-rikelCi5wjhx7nbgkdrAdiX4Fv4yr9M5pRquZ2d2JonuCVwRXyVpxcIfBraWzmNCLaBGmWVzRsro88SyNE5JU19GNcweMcZHmeBH97rSH1jKvdIuAm7E7OmV60x4R0wKNPdNf3mgkjpoNijuktDdotOYA3INAA_tRwzQgqVwHVoFDnHneodF40F6xHk1agEW8VwPzgHjHdAshBfkO0JuxAZjzaOPDJq_4bXQlWe_g7ozL6PP56WP7Gu_fX3bbzT7mSZr5WOYlTWlOM9qUnIrAcZKThpdlIaASFc8aTDMBRV6ypJGENSQjBWO5xKnMRJkso4c5N7zyPYHz9aAchz5cAWZydUVxUeWE4KBczUpujXMWZD3a8Is91gTXp-Lrc_H1XHwwPM4GM43_af8APoWLqQ</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Cheung, William W. L.</creator><creator>Dunne, John</creator><creator>Sarmiento, Jorge L.</creator><creator>Pauly, Daniel</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>201107</creationdate><title>Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic</title><author>Cheung, William W. L. ; Dunne, John ; Sarmiento, Jorge L. ; Pauly, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-f682426252b8c2d2420361bc887de9d9c5b025de768a3bf1ab1517aa6f04f5d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Climate change</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Fisheries</topic><topic>Marine</topic><topic>Northeast</topic><topic>Oceans</topic><topic>Phytoplankton</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheung, William W. L.</creatorcontrib><creatorcontrib>Dunne, John</creatorcontrib><creatorcontrib>Sarmiento, Jorge L.</creatorcontrib><creatorcontrib>Pauly, Daniel</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>ICES journal of marine science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cheung, William W. L.</au><au>Dunne, John</au><au>Sarmiento, Jorge L.</au><au>Pauly, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic</atitle><jtitle>ICES journal of marine science</jtitle><date>2011-07</date><risdate>2011</risdate><volume>68</volume><issue>6</issue><spage>1008</spage><epage>1018</epage><pages>1008-1018</pages><issn>1054-3139</issn><eissn>1095-9289</eissn><abstract>Cheung, W. W. L., Dunne, J., Sarmiento, J. L., and Pauly, D. 2011. Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. - ICES Journal of Marine Science, 68: 1008-1018. Previous global analyses projected shifts in species distributions and maximum fisheries catch potential across ocean basins by 2050 under the Special Report on Emission Scenarios (SRES) A1B. However, these studies did not account for the effects of changes in ocean biogeochemistry and phytoplankton community structure that affect fish and invertebrate distribution and productivity. This paper uses a dynamic bioclimatic envelope model that incorporates these factors to project distribution and maximum catch potential of 120 species of exploited demersal fish and invertebrates in the Northeast Atlantic. Using projections from the US National Oceanic and Atmospheric Administration's (NOAA) Geophysical Fluid Dynamics Laboratory Earth System Model (ESM2.1) under the SRES A1B, we project an average rate of distribution-centroid shift of 52 km decade−1 northwards and 5.1 m decade−1 deeper from 2005 to 2050. Ocean acidification and reduction in oxygen content reduce growth performance, increase the rate of range shift, and lower the estimated catch potentials (10-year average of 2050 relative to 2005) by 20-30% relative to simulations without considering these factors. Consideration of phytoplankton community structure may further reduce projected catch potentials by ∼10%. These results highlight the sensitivity of marine ecosystems to biogeochemical changes and the need to incorporate likely hypotheses of their biological and ecological effects in assessing climate change impacts.</abstract><pub>Oxford University Press</pub><doi>10.1093/icesjms/fsr012</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1054-3139
ispartof ICES journal of marine science, 2011-07, Vol.68 (6), p.1008-1018
issn 1054-3139
1095-9289
language eng
recordid cdi_proquest_miscellaneous_920796110
source Oxford Open Access Journals
subjects Climate change
Dynamical systems
Dynamics
Fisheries
Marine
Northeast
Oceans
Phytoplankton
title Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A26%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20ecophysiology%20and%20plankton%20dynamics%20into%20projected%20maximum%20fisheries%20catch%20potential%20under%20climate%20change%20in%20the%20Northeast%20Atlantic&rft.jtitle=ICES%20journal%20of%20marine%20science&rft.au=Cheung,%20William%20W.%20L.&rft.date=2011-07&rft.volume=68&rft.issue=6&rft.spage=1008&rft.epage=1018&rft.pages=1008-1018&rft.issn=1054-3139&rft.eissn=1095-9289&rft_id=info:doi/10.1093/icesjms/fsr012&rft_dat=%3Cproquest_TOX%3E920796110%3C/proquest_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c345t-f682426252b8c2d2420361bc887de9d9c5b025de768a3bf1ab1517aa6f04f5d83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=920796110&rft_id=info:pmid/&rft_oup_id=10.1093/icesjms/fsr012&rfr_iscdi=true