Loading…
Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic
Cheung, W. W. L., Dunne, J., Sarmiento, J. L., and Pauly, D. 2011. Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. - ICES Journal of Marine Science, 68: 1008-1018. Previous global analyses projected shif...
Saved in:
Published in: | ICES journal of marine science 2011-07, Vol.68 (6), p.1008-1018 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c345t-f682426252b8c2d2420361bc887de9d9c5b025de768a3bf1ab1517aa6f04f5d83 |
---|---|
cites | cdi_FETCH-LOGICAL-c345t-f682426252b8c2d2420361bc887de9d9c5b025de768a3bf1ab1517aa6f04f5d83 |
container_end_page | 1018 |
container_issue | 6 |
container_start_page | 1008 |
container_title | ICES journal of marine science |
container_volume | 68 |
creator | Cheung, William W. L. Dunne, John Sarmiento, Jorge L. Pauly, Daniel |
description | Cheung, W. W. L., Dunne, J., Sarmiento, J. L., and Pauly, D. 2011. Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. - ICES Journal of Marine Science, 68: 1008-1018.
Previous global analyses projected shifts in species distributions and maximum fisheries catch potential across ocean basins by 2050 under the Special Report on Emission Scenarios (SRES) A1B. However, these studies did not account for the effects of changes in ocean biogeochemistry and phytoplankton community structure that affect fish and invertebrate distribution and productivity. This paper uses a dynamic bioclimatic envelope model that incorporates these factors to project distribution and maximum catch potential of 120 species of exploited demersal fish and invertebrates in the Northeast Atlantic. Using projections from the US National Oceanic and Atmospheric Administration's (NOAA) Geophysical Fluid Dynamics Laboratory Earth System Model (ESM2.1) under the SRES A1B, we project an average rate of distribution-centroid shift of 52 km decade−1 northwards and 5.1 m decade−1 deeper from 2005 to 2050. Ocean acidification and reduction in oxygen content reduce growth performance, increase the rate of range shift, and lower the estimated catch potentials (10-year average of 2050 relative to 2005) by 20-30% relative to simulations without considering these factors. Consideration of phytoplankton community structure may further reduce projected catch potentials by ∼10%. These results highlight the sensitivity of marine ecosystems to biogeochemical changes and the need to incorporate likely hypotheses of their biological and ecological effects in assessing climate change impacts. |
doi_str_mv | 10.1093/icesjms/fsr012 |
format | article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_920796110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/icesjms/fsr012</oup_id><sourcerecordid>920796110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-f682426252b8c2d2420361bc887de9d9c5b025de768a3bf1ab1517aa6f04f5d83</originalsourceid><addsrcrecordid>eNqFUMtOwzAQjBBIlMKVs2-IQ1rbeR-rikelCi5wjhx7nbgkdrAdiX4Fv4yr9M5pRquZ2d2JonuCVwRXyVpxcIfBraWzmNCLaBGmWVzRsro88SyNE5JU19GNcweMcZHmeBH97rSH1jKvdIuAm7E7OmV60x4R0wKNPdNf3mgkjpoNijuktDdotOYA3INAA_tRwzQgqVwHVoFDnHneodF40F6xHk1agEW8VwPzgHjHdAshBfkO0JuxAZjzaOPDJq_4bXQlWe_g7ozL6PP56WP7Gu_fX3bbzT7mSZr5WOYlTWlOM9qUnIrAcZKThpdlIaASFc8aTDMBRV6ypJGENSQjBWO5xKnMRJkso4c5N7zyPYHz9aAchz5cAWZydUVxUeWE4KBczUpujXMWZD3a8Is91gTXp-Lrc_H1XHwwPM4GM43_af8APoWLqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920796110</pqid></control><display><type>article</type><title>Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic</title><source>Oxford Open Access Journals</source><creator>Cheung, William W. L. ; Dunne, John ; Sarmiento, Jorge L. ; Pauly, Daniel</creator><creatorcontrib>Cheung, William W. L. ; Dunne, John ; Sarmiento, Jorge L. ; Pauly, Daniel</creatorcontrib><description>Cheung, W. W. L., Dunne, J., Sarmiento, J. L., and Pauly, D. 2011. Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. - ICES Journal of Marine Science, 68: 1008-1018.
Previous global analyses projected shifts in species distributions and maximum fisheries catch potential across ocean basins by 2050 under the Special Report on Emission Scenarios (SRES) A1B. However, these studies did not account for the effects of changes in ocean biogeochemistry and phytoplankton community structure that affect fish and invertebrate distribution and productivity. This paper uses a dynamic bioclimatic envelope model that incorporates these factors to project distribution and maximum catch potential of 120 species of exploited demersal fish and invertebrates in the Northeast Atlantic. Using projections from the US National Oceanic and Atmospheric Administration's (NOAA) Geophysical Fluid Dynamics Laboratory Earth System Model (ESM2.1) under the SRES A1B, we project an average rate of distribution-centroid shift of 52 km decade−1 northwards and 5.1 m decade−1 deeper from 2005 to 2050. Ocean acidification and reduction in oxygen content reduce growth performance, increase the rate of range shift, and lower the estimated catch potentials (10-year average of 2050 relative to 2005) by 20-30% relative to simulations without considering these factors. Consideration of phytoplankton community structure may further reduce projected catch potentials by ∼10%. These results highlight the sensitivity of marine ecosystems to biogeochemical changes and the need to incorporate likely hypotheses of their biological and ecological effects in assessing climate change impacts.</description><identifier>ISSN: 1054-3139</identifier><identifier>EISSN: 1095-9289</identifier><identifier>DOI: 10.1093/icesjms/fsr012</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Climate change ; Dynamical systems ; Dynamics ; Fisheries ; Marine ; Northeast ; Oceans ; Phytoplankton</subject><ispartof>ICES journal of marine science, 2011-07, Vol.68 (6), p.1008-1018</ispartof><rights>2011 International Council for the Exploration of the Sea. Published by Oxford Journals. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-f682426252b8c2d2420361bc887de9d9c5b025de768a3bf1ab1517aa6f04f5d83</citedby><cites>FETCH-LOGICAL-c345t-f682426252b8c2d2420361bc887de9d9c5b025de768a3bf1ab1517aa6f04f5d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,1599,27905,27906</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/icesjms/fsr012$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Cheung, William W. L.</creatorcontrib><creatorcontrib>Dunne, John</creatorcontrib><creatorcontrib>Sarmiento, Jorge L.</creatorcontrib><creatorcontrib>Pauly, Daniel</creatorcontrib><title>Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic</title><title>ICES journal of marine science</title><description>Cheung, W. W. L., Dunne, J., Sarmiento, J. L., and Pauly, D. 2011. Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. - ICES Journal of Marine Science, 68: 1008-1018.
Previous global analyses projected shifts in species distributions and maximum fisheries catch potential across ocean basins by 2050 under the Special Report on Emission Scenarios (SRES) A1B. However, these studies did not account for the effects of changes in ocean biogeochemistry and phytoplankton community structure that affect fish and invertebrate distribution and productivity. This paper uses a dynamic bioclimatic envelope model that incorporates these factors to project distribution and maximum catch potential of 120 species of exploited demersal fish and invertebrates in the Northeast Atlantic. Using projections from the US National Oceanic and Atmospheric Administration's (NOAA) Geophysical Fluid Dynamics Laboratory Earth System Model (ESM2.1) under the SRES A1B, we project an average rate of distribution-centroid shift of 52 km decade−1 northwards and 5.1 m decade−1 deeper from 2005 to 2050. Ocean acidification and reduction in oxygen content reduce growth performance, increase the rate of range shift, and lower the estimated catch potentials (10-year average of 2050 relative to 2005) by 20-30% relative to simulations without considering these factors. Consideration of phytoplankton community structure may further reduce projected catch potentials by ∼10%. These results highlight the sensitivity of marine ecosystems to biogeochemical changes and the need to incorporate likely hypotheses of their biological and ecological effects in assessing climate change impacts.</description><subject>Climate change</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Fisheries</subject><subject>Marine</subject><subject>Northeast</subject><subject>Oceans</subject><subject>Phytoplankton</subject><issn>1054-3139</issn><issn>1095-9289</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQjBBIlMKVs2-IQ1rbeR-rikelCi5wjhx7nbgkdrAdiX4Fv4yr9M5pRquZ2d2JonuCVwRXyVpxcIfBraWzmNCLaBGmWVzRsro88SyNE5JU19GNcweMcZHmeBH97rSH1jKvdIuAm7E7OmV60x4R0wKNPdNf3mgkjpoNijuktDdotOYA3INAA_tRwzQgqVwHVoFDnHneodF40F6xHk1agEW8VwPzgHjHdAshBfkO0JuxAZjzaOPDJq_4bXQlWe_g7ozL6PP56WP7Gu_fX3bbzT7mSZr5WOYlTWlOM9qUnIrAcZKThpdlIaASFc8aTDMBRV6ypJGENSQjBWO5xKnMRJkso4c5N7zyPYHz9aAchz5cAWZydUVxUeWE4KBczUpujXMWZD3a8Is91gTXp-Lrc_H1XHwwPM4GM43_af8APoWLqQ</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Cheung, William W. L.</creator><creator>Dunne, John</creator><creator>Sarmiento, Jorge L.</creator><creator>Pauly, Daniel</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>201107</creationdate><title>Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic</title><author>Cheung, William W. L. ; Dunne, John ; Sarmiento, Jorge L. ; Pauly, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-f682426252b8c2d2420361bc887de9d9c5b025de768a3bf1ab1517aa6f04f5d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Climate change</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Fisheries</topic><topic>Marine</topic><topic>Northeast</topic><topic>Oceans</topic><topic>Phytoplankton</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheung, William W. L.</creatorcontrib><creatorcontrib>Dunne, John</creatorcontrib><creatorcontrib>Sarmiento, Jorge L.</creatorcontrib><creatorcontrib>Pauly, Daniel</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>ICES journal of marine science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cheung, William W. L.</au><au>Dunne, John</au><au>Sarmiento, Jorge L.</au><au>Pauly, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic</atitle><jtitle>ICES journal of marine science</jtitle><date>2011-07</date><risdate>2011</risdate><volume>68</volume><issue>6</issue><spage>1008</spage><epage>1018</epage><pages>1008-1018</pages><issn>1054-3139</issn><eissn>1095-9289</eissn><abstract>Cheung, W. W. L., Dunne, J., Sarmiento, J. L., and Pauly, D. 2011. Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. - ICES Journal of Marine Science, 68: 1008-1018.
Previous global analyses projected shifts in species distributions and maximum fisheries catch potential across ocean basins by 2050 under the Special Report on Emission Scenarios (SRES) A1B. However, these studies did not account for the effects of changes in ocean biogeochemistry and phytoplankton community structure that affect fish and invertebrate distribution and productivity. This paper uses a dynamic bioclimatic envelope model that incorporates these factors to project distribution and maximum catch potential of 120 species of exploited demersal fish and invertebrates in the Northeast Atlantic. Using projections from the US National Oceanic and Atmospheric Administration's (NOAA) Geophysical Fluid Dynamics Laboratory Earth System Model (ESM2.1) under the SRES A1B, we project an average rate of distribution-centroid shift of 52 km decade−1 northwards and 5.1 m decade−1 deeper from 2005 to 2050. Ocean acidification and reduction in oxygen content reduce growth performance, increase the rate of range shift, and lower the estimated catch potentials (10-year average of 2050 relative to 2005) by 20-30% relative to simulations without considering these factors. Consideration of phytoplankton community structure may further reduce projected catch potentials by ∼10%. These results highlight the sensitivity of marine ecosystems to biogeochemical changes and the need to incorporate likely hypotheses of their biological and ecological effects in assessing climate change impacts.</abstract><pub>Oxford University Press</pub><doi>10.1093/icesjms/fsr012</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1054-3139 |
ispartof | ICES journal of marine science, 2011-07, Vol.68 (6), p.1008-1018 |
issn | 1054-3139 1095-9289 |
language | eng |
recordid | cdi_proquest_miscellaneous_920796110 |
source | Oxford Open Access Journals |
subjects | Climate change Dynamical systems Dynamics Fisheries Marine Northeast Oceans Phytoplankton |
title | Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A26%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20ecophysiology%20and%20plankton%20dynamics%20into%20projected%20maximum%20fisheries%20catch%20potential%20under%20climate%20change%20in%20the%20Northeast%20Atlantic&rft.jtitle=ICES%20journal%20of%20marine%20science&rft.au=Cheung,%20William%20W.%20L.&rft.date=2011-07&rft.volume=68&rft.issue=6&rft.spage=1008&rft.epage=1018&rft.pages=1008-1018&rft.issn=1054-3139&rft.eissn=1095-9289&rft_id=info:doi/10.1093/icesjms/fsr012&rft_dat=%3Cproquest_TOX%3E920796110%3C/proquest_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c345t-f682426252b8c2d2420361bc887de9d9c5b025de768a3bf1ab1517aa6f04f5d83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=920796110&rft_id=info:pmid/&rft_oup_id=10.1093/icesjms/fsr012&rfr_iscdi=true |