Loading…

Optimization of magnetic powdered activated carbon for aqueous Hg(II) removal and magnetic recovery

► Thermal oxidation of MPAC decreased the amorphous characteristic of iron oxides. ► Thermal oxidation did not influence magnetic recovery or Hg removal performance. ► At all thermal oxidation temperatures, the 3:1 MPAC achieved the highest Hg removal. Activated carbon is known to adsorb aqueous Hg(...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hazardous materials 2012-01, Vol.199 (15), p.9-14
Main Authors: Faulconer, Emily K., von Reitzenstein, Natalia V. Hoogesteijn, Mazyck, David W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c490t-72d6f9b91774ceef6b11bc4b3732691b90caf41bcf3ac358c953496e5066c1233
cites cdi_FETCH-LOGICAL-c490t-72d6f9b91774ceef6b11bc4b3732691b90caf41bcf3ac358c953496e5066c1233
container_end_page 14
container_issue 15
container_start_page 9
container_title Journal of hazardous materials
container_volume 199
creator Faulconer, Emily K.
von Reitzenstein, Natalia V. Hoogesteijn
Mazyck, David W.
description ► Thermal oxidation of MPAC decreased the amorphous characteristic of iron oxides. ► Thermal oxidation did not influence magnetic recovery or Hg removal performance. ► At all thermal oxidation temperatures, the 3:1 MPAC achieved the highest Hg removal. Activated carbon is known to adsorb aqueous Hg(II). MPAC (magnetic powdered activated carbon) has the potential to remove aqueous Hg to less than 0.2 μg/L while being magnetically recoverable. Magnetic recapture allows simple sorbent separation from the waste stream while an isolated waste potentially allows for mercury recycling. MPAC Hg-removal performance is verified by mercury mass balance, calculated by quantifying adsorbed, volatilized, and residual aqueous mercury. The batch reactor contained a sealed mercury–carbon contact chamber with mixing and constant N 2 (g) headspace flow to an oxidizing trap. Mercury adsorption was performed using spiked ultrapure water (100 μg/L Hg). Mercury concentrations were obtained using EPA method 245.1 and cold vapor atomic absorption spectroscopy. MPAC synthesis was optimized for Hg removal and sorbent recovery according to the variables: C:Fe, thermal oxidation temperature and time. The 3:1 C:Fe preserved most of the original sorbent surface area. As indicated by XRD patterns, thermal oxidation reduced the amorphous characteristic of the iron oxides but did not improve sorbent recovery and damaged porosity at higher oxidation temperatures. Therefore, the optimal synthesis variables, 3:1 C:Fe mass ratio without thermal oxidation, which can achieve 92.5% (±8.3%) sorbent recovery and 96.3% (±9%) Hg removal. The mass balance has been closed to within approximately ±15%.
doi_str_mv 10.1016/j.jhazmat.2011.10.023
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_920798984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304389411012635</els_id><sourcerecordid>920798984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-72d6f9b91774ceef6b11bc4b3732691b90caf41bcf3ac358c953496e5066c1233</originalsourceid><addsrcrecordid>eNqFkcFuEzEURS0EoqHwCcDsKIsJ79kee7yqUAU0UqUuoGvL4_EER5lxsJ2g9uvxkAA7urL1dHx99Q4hrxGWCCg-bJab7-ZhNHlJAbHMlkDZE7LAVrKaMSaekgUw4DVrFT8jL1LaAADKhj8nZ5QicCnEgtjbXfajfzDZh6kKQzWa9eSyt9Uu_OxddH1lbPYHk8vNmtgVagixMj_2LuxTdb2-WK3eV9GN4WC2lZn6fwnR2XBw8f4leTaYbXKvTuc5ufv86dvVdX1z-2V19fGmtlxBriXtxaA6hVJy69wgOsTO8o5JRoXCToE1Ay-jgRnLmtaqhnElXANCWKSMnZN3x9xdDKVeynr0ybrt1kxzV60oSNWqlj9OIlUoWpwzL_5LogQl50xR0OaI2hhSim7Qu-hHE-81gp6d6Y0-OdOzs3kMv2u_OX2x70bX_331R1IB3h6BwQRt1tEnffe1JDTFp2oQ2kJcHglX1nvwLupkvZus632RkHUf_CMlfgGTcrNo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709789846</pqid></control><display><type>article</type><title>Optimization of magnetic powdered activated carbon for aqueous Hg(II) removal and magnetic recovery</title><source>ScienceDirect Freedom Collection</source><creator>Faulconer, Emily K. ; von Reitzenstein, Natalia V. Hoogesteijn ; Mazyck, David W.</creator><creatorcontrib>Faulconer, Emily K. ; von Reitzenstein, Natalia V. Hoogesteijn ; Mazyck, David W.</creatorcontrib><description>► Thermal oxidation of MPAC decreased the amorphous characteristic of iron oxides. ► Thermal oxidation did not influence magnetic recovery or Hg removal performance. ► At all thermal oxidation temperatures, the 3:1 MPAC achieved the highest Hg removal. Activated carbon is known to adsorb aqueous Hg(II). MPAC (magnetic powdered activated carbon) has the potential to remove aqueous Hg to less than 0.2 μg/L while being magnetically recoverable. Magnetic recapture allows simple sorbent separation from the waste stream while an isolated waste potentially allows for mercury recycling. MPAC Hg-removal performance is verified by mercury mass balance, calculated by quantifying adsorbed, volatilized, and residual aqueous mercury. The batch reactor contained a sealed mercury–carbon contact chamber with mixing and constant N 2 (g) headspace flow to an oxidizing trap. Mercury adsorption was performed using spiked ultrapure water (100 μg/L Hg). Mercury concentrations were obtained using EPA method 245.1 and cold vapor atomic absorption spectroscopy. MPAC synthesis was optimized for Hg removal and sorbent recovery according to the variables: C:Fe, thermal oxidation temperature and time. The 3:1 C:Fe preserved most of the original sorbent surface area. As indicated by XRD patterns, thermal oxidation reduced the amorphous characteristic of the iron oxides but did not improve sorbent recovery and damaged porosity at higher oxidation temperatures. Therefore, the optimal synthesis variables, 3:1 C:Fe mass ratio without thermal oxidation, which can achieve 92.5% (±8.3%) sorbent recovery and 96.3% (±9%) Hg removal. The mass balance has been closed to within approximately ±15%.</description><identifier>ISSN: 0304-3894</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2011.10.023</identifier><identifier>PMID: 22104766</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Activated carbon ; Adsorption ; atomic absorption spectrometry ; Carbon - chemistry ; cold ; headspace analysis ; iron oxides ; Magnetic sorbent ; Magnetics ; Mercury ; Mercury - isolation &amp; purification ; Mercury adsorption ; mixing ; nitrogen ; Optimization ; Oxidation ; Oxidation-Reduction ; porosity ; Recovering ; recycling ; Sorbents ; Spectrophotometry, Atomic ; surface area ; Synthesis ; temperature ; vapors ; Wastes ; X-Ray Diffraction</subject><ispartof>Journal of hazardous materials, 2012-01, Vol.199 (15), p.9-14</ispartof><rights>2011 Elsevier B.V.</rights><rights>Copyright © 2011 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-72d6f9b91774ceef6b11bc4b3732691b90caf41bcf3ac358c953496e5066c1233</citedby><cites>FETCH-LOGICAL-c490t-72d6f9b91774ceef6b11bc4b3732691b90caf41bcf3ac358c953496e5066c1233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22104766$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Faulconer, Emily K.</creatorcontrib><creatorcontrib>von Reitzenstein, Natalia V. Hoogesteijn</creatorcontrib><creatorcontrib>Mazyck, David W.</creatorcontrib><title>Optimization of magnetic powdered activated carbon for aqueous Hg(II) removal and magnetic recovery</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>► Thermal oxidation of MPAC decreased the amorphous characteristic of iron oxides. ► Thermal oxidation did not influence magnetic recovery or Hg removal performance. ► At all thermal oxidation temperatures, the 3:1 MPAC achieved the highest Hg removal. Activated carbon is known to adsorb aqueous Hg(II). MPAC (magnetic powdered activated carbon) has the potential to remove aqueous Hg to less than 0.2 μg/L while being magnetically recoverable. Magnetic recapture allows simple sorbent separation from the waste stream while an isolated waste potentially allows for mercury recycling. MPAC Hg-removal performance is verified by mercury mass balance, calculated by quantifying adsorbed, volatilized, and residual aqueous mercury. The batch reactor contained a sealed mercury–carbon contact chamber with mixing and constant N 2 (g) headspace flow to an oxidizing trap. Mercury adsorption was performed using spiked ultrapure water (100 μg/L Hg). Mercury concentrations were obtained using EPA method 245.1 and cold vapor atomic absorption spectroscopy. MPAC synthesis was optimized for Hg removal and sorbent recovery according to the variables: C:Fe, thermal oxidation temperature and time. The 3:1 C:Fe preserved most of the original sorbent surface area. As indicated by XRD patterns, thermal oxidation reduced the amorphous characteristic of the iron oxides but did not improve sorbent recovery and damaged porosity at higher oxidation temperatures. Therefore, the optimal synthesis variables, 3:1 C:Fe mass ratio without thermal oxidation, which can achieve 92.5% (±8.3%) sorbent recovery and 96.3% (±9%) Hg removal. The mass balance has been closed to within approximately ±15%.</description><subject>Activated carbon</subject><subject>Adsorption</subject><subject>atomic absorption spectrometry</subject><subject>Carbon - chemistry</subject><subject>cold</subject><subject>headspace analysis</subject><subject>iron oxides</subject><subject>Magnetic sorbent</subject><subject>Magnetics</subject><subject>Mercury</subject><subject>Mercury - isolation &amp; purification</subject><subject>Mercury adsorption</subject><subject>mixing</subject><subject>nitrogen</subject><subject>Optimization</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>porosity</subject><subject>Recovering</subject><subject>recycling</subject><subject>Sorbents</subject><subject>Spectrophotometry, Atomic</subject><subject>surface area</subject><subject>Synthesis</subject><subject>temperature</subject><subject>vapors</subject><subject>Wastes</subject><subject>X-Ray Diffraction</subject><issn>0304-3894</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkcFuEzEURS0EoqHwCcDsKIsJ79kee7yqUAU0UqUuoGvL4_EER5lxsJ2g9uvxkAA7urL1dHx99Q4hrxGWCCg-bJab7-ZhNHlJAbHMlkDZE7LAVrKaMSaekgUw4DVrFT8jL1LaAADKhj8nZ5QicCnEgtjbXfajfzDZh6kKQzWa9eSyt9Uu_OxddH1lbPYHk8vNmtgVagixMj_2LuxTdb2-WK3eV9GN4WC2lZn6fwnR2XBw8f4leTaYbXKvTuc5ufv86dvVdX1z-2V19fGmtlxBriXtxaA6hVJy69wgOsTO8o5JRoXCToE1Ay-jgRnLmtaqhnElXANCWKSMnZN3x9xdDKVeynr0ybrt1kxzV60oSNWqlj9OIlUoWpwzL_5LogQl50xR0OaI2hhSim7Qu-hHE-81gp6d6Y0-OdOzs3kMv2u_OX2x70bX_331R1IB3h6BwQRt1tEnffe1JDTFp2oQ2kJcHglX1nvwLupkvZus632RkHUf_CMlfgGTcrNo</recordid><startdate>20120115</startdate><enddate>20120115</enddate><creator>Faulconer, Emily K.</creator><creator>von Reitzenstein, Natalia V. Hoogesteijn</creator><creator>Mazyck, David W.</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7SU</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>7X8</scope><scope>7QH</scope><scope>7ST</scope><scope>7U7</scope><scope>7UA</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>20120115</creationdate><title>Optimization of magnetic powdered activated carbon for aqueous Hg(II) removal and magnetic recovery</title><author>Faulconer, Emily K. ; von Reitzenstein, Natalia V. Hoogesteijn ; Mazyck, David W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-72d6f9b91774ceef6b11bc4b3732691b90caf41bcf3ac358c953496e5066c1233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Activated carbon</topic><topic>Adsorption</topic><topic>atomic absorption spectrometry</topic><topic>Carbon - chemistry</topic><topic>cold</topic><topic>headspace analysis</topic><topic>iron oxides</topic><topic>Magnetic sorbent</topic><topic>Magnetics</topic><topic>Mercury</topic><topic>Mercury - isolation &amp; purification</topic><topic>Mercury adsorption</topic><topic>mixing</topic><topic>nitrogen</topic><topic>Optimization</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>porosity</topic><topic>Recovering</topic><topic>recycling</topic><topic>Sorbents</topic><topic>Spectrophotometry, Atomic</topic><topic>surface area</topic><topic>Synthesis</topic><topic>temperature</topic><topic>vapors</topic><topic>Wastes</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faulconer, Emily K.</creatorcontrib><creatorcontrib>von Reitzenstein, Natalia V. Hoogesteijn</creatorcontrib><creatorcontrib>Mazyck, David W.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faulconer, Emily K.</au><au>von Reitzenstein, Natalia V. Hoogesteijn</au><au>Mazyck, David W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of magnetic powdered activated carbon for aqueous Hg(II) removal and magnetic recovery</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2012-01-15</date><risdate>2012</risdate><volume>199</volume><issue>15</issue><spage>9</spage><epage>14</epage><pages>9-14</pages><issn>0304-3894</issn><eissn>1873-3336</eissn><abstract>► Thermal oxidation of MPAC decreased the amorphous characteristic of iron oxides. ► Thermal oxidation did not influence magnetic recovery or Hg removal performance. ► At all thermal oxidation temperatures, the 3:1 MPAC achieved the highest Hg removal. Activated carbon is known to adsorb aqueous Hg(II). MPAC (magnetic powdered activated carbon) has the potential to remove aqueous Hg to less than 0.2 μg/L while being magnetically recoverable. Magnetic recapture allows simple sorbent separation from the waste stream while an isolated waste potentially allows for mercury recycling. MPAC Hg-removal performance is verified by mercury mass balance, calculated by quantifying adsorbed, volatilized, and residual aqueous mercury. The batch reactor contained a sealed mercury–carbon contact chamber with mixing and constant N 2 (g) headspace flow to an oxidizing trap. Mercury adsorption was performed using spiked ultrapure water (100 μg/L Hg). Mercury concentrations were obtained using EPA method 245.1 and cold vapor atomic absorption spectroscopy. MPAC synthesis was optimized for Hg removal and sorbent recovery according to the variables: C:Fe, thermal oxidation temperature and time. The 3:1 C:Fe preserved most of the original sorbent surface area. As indicated by XRD patterns, thermal oxidation reduced the amorphous characteristic of the iron oxides but did not improve sorbent recovery and damaged porosity at higher oxidation temperatures. Therefore, the optimal synthesis variables, 3:1 C:Fe mass ratio without thermal oxidation, which can achieve 92.5% (±8.3%) sorbent recovery and 96.3% (±9%) Hg removal. The mass balance has been closed to within approximately ±15%.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>22104766</pmid><doi>10.1016/j.jhazmat.2011.10.023</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-3894
ispartof Journal of hazardous materials, 2012-01, Vol.199 (15), p.9-14
issn 0304-3894
1873-3336
language eng
recordid cdi_proquest_miscellaneous_920798984
source ScienceDirect Freedom Collection
subjects Activated carbon
Adsorption
atomic absorption spectrometry
Carbon - chemistry
cold
headspace analysis
iron oxides
Magnetic sorbent
Magnetics
Mercury
Mercury - isolation & purification
Mercury adsorption
mixing
nitrogen
Optimization
Oxidation
Oxidation-Reduction
porosity
Recovering
recycling
Sorbents
Spectrophotometry, Atomic
surface area
Synthesis
temperature
vapors
Wastes
X-Ray Diffraction
title Optimization of magnetic powdered activated carbon for aqueous Hg(II) removal and magnetic recovery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A51%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20magnetic%20powdered%20activated%20carbon%20for%20aqueous%20Hg(II)%20removal%20and%20magnetic%20recovery&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Faulconer,%20Emily%20K.&rft.date=2012-01-15&rft.volume=199&rft.issue=15&rft.spage=9&rft.epage=14&rft.pages=9-14&rft.issn=0304-3894&rft.eissn=1873-3336&rft_id=info:doi/10.1016/j.jhazmat.2011.10.023&rft_dat=%3Cproquest_cross%3E920798984%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c490t-72d6f9b91774ceef6b11bc4b3732691b90caf41bcf3ac358c953496e5066c1233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1709789846&rft_id=info:pmid/22104766&rfr_iscdi=true