Loading…

DNA methylation plays a crucial role during early Nasonia development

Although the role of DNA methylation in insect development is still poorly understood, the number and role of DNA methyltransferases in insects vary strongly between species. DNA methylation appears to be widely present among the social hymenoptera and functional studies in Apis have suggested a cru...

Full description

Saved in:
Bibliographic Details
Published in:Insect molecular biology 2012-02, Vol.21 (1), p.129-138
Main Authors: Zwier, M. V, Verhulst, E. C, Zwahlen, R. D, Beukeboom, L. W, van de Zande, L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Although the role of DNA methylation in insect development is still poorly understood, the number and role of DNA methyltransferases in insects vary strongly between species. DNA methylation appears to be widely present among the social hymenoptera and functional studies in Apis have suggested a crucial role for de novo methylation in a wide variety of developmental processes. The sequencing of three parasitoid Nasonia genomes revealed the presence of three Dnmt1 (Dnmt1a, Dnmt1b and Dnmt1c) genes and one Dnmt2 and Dnmt3 gene, suggesting a role of DNA methylation in Nasonia development. In the present study we show that in Nasonia vitripennis all Dnmt1 messenger RNAs (mRNAs) and Dnmt3 mRNA are maternally provided to the embryo and, of these, Dnmt1a is essential during early embryogenesis. Lowering of maternal Dnmt1a mRNA results in embryonic lethality during the onset of gastrulation. This dependence on maternal Dnmt1a during embryogenesis in an organismal group outside the vertebrates, suggests evolutionary conservation of the function of Dnmt1 during embryogenesis.
ISSN:0962-1075
1365-2583
DOI:10.1111/j.1365-2583.2011.01121.x