Loading…
Soluble BAFF levels inversely correlate with peripheral B cell numbers and the expression of BAFF receptors
The TNF family member protein BAFF/BLyS is essential for B cell survival and plays an important role in regulating class switch recombination as well as in the selection of autoreactive B cells. In humans, increased concentrations of soluble BAFF are found in different pathological conditions, which...
Saved in:
Published in: | The Journal of immunology (1950) 2012-01, Vol.188 (1), p.497-503 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The TNF family member protein BAFF/BLyS is essential for B cell survival and plays an important role in regulating class switch recombination as well as in the selection of autoreactive B cells. In humans, increased concentrations of soluble BAFF are found in different pathological conditions, which may be as diverse as autoimmune diseases, B cell malignancies, and primary Ab deficiencies (PAD). Because the mechanisms that regulate BAFF levels are not well understood, we newly developed a set of mAbs against human BAFF to study the parameters that determine the concentrations of soluble BAFF in circulation. Patients with PAD, including severe functional B cell defects such as BTK, BAFF-R, or TACI deficiency, were found to have higher BAFF levels than asplenic individuals, patients after anti-CD20 B cell depletion, chronic lymphocytic leukemia patients, or healthy donors. In a comparable manner, mice constitutively expressing human BAFF were found to have higher concentrations of BAFF in the absence than in the presence of B cells. Therefore, our data strongly suggest that BAFF steady-state concentrations mainly depend on the number of B cells as well as on the expression of BAFF-binding receptors. Because most patients with PAD have high levels of circulating BAFF, the increase in BAFF concentrations cannot compensate defects in B cell development and function. |
---|---|
ISSN: | 0022-1767 1550-6606 |
DOI: | 10.4049/jimmunol.1102321 |