Loading…

Comparative responsiveness to natural and synthetic estrogens of fish species commonly used in the laboratory and field monitoring

► Different fish species differ in their responsiveness to estrogens. ► Estrogen responsiveness in receptor transactivation assays equate well with responses in vivo. ► Estrogen receptor transactivation assays are effective screening tools for estrogenic substances. Exposure to estrogenic chemicals...

Full description

Saved in:
Bibliographic Details
Published in:Aquatic toxicology 2012-03, Vol.109, p.250-258
Main Authors: Lange, Anke, Katsu, Yoshinao, Miyagawa, Shinichi, Ogino, Yukiko, Urushitani, Hiroshi, Kobayashi, Tohru, Hirai, Toshiaki, Shears, Janice A., Nagae, Masaki, Yamamoto, Jun, Ohnishi, Yuta, Oka, Tomohiro, Tatarazako, Norihisa, Ohta, Yasuhiko, Tyler, Charles R., Iguchi, Taisen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:► Different fish species differ in their responsiveness to estrogens. ► Estrogen responsiveness in receptor transactivation assays equate well with responses in vivo. ► Estrogen receptor transactivation assays are effective screening tools for estrogenic substances. Exposure to estrogenic chemicals discharged into the aquatic environment has been shown to induce feminization in wild freshwater fish and although fish species have been reported to differ in their susceptibility for these effects, empirical studies that directly address this hypothesis are lacking. In this study, in vitro ERα activation assays were applied in a range of fish species used widely in chemical testing (including, zebrafish, fathead minnow, medaka) and/or as environmental monitoring species (including, roach, stickleback, carp) to assess their comparative responsiveness to natural (estrone, estradiol, estriol) and synthetic (17α-ethinylestradiol (EE2), diethylstilbestrol (DES)) estrogens. In vivo exposures to EE2 via the water (nominal 2 and 10ng/L for 7 days) were also conducted for seven fish species to compare their responsiveness for hepatic vitellogenin (VTG) mRNA induction (an ER mediated response). Of the fish species tested, zebrafish ERα was found to be the most responsive and carp and stickleback ERα the least responsive to natural steroid estrogens. This was also the case for exposure to EE2 with an ERα-mediated response sensitivity order of zebrafish>medaka>roach>fathead minnow>carp>stickleback. For VTG mRNA induction in vivo, the order of species responsiveness was: rainbow trout (not tested in the ERα activation assays)>zebrafish>fathead minnow>medaka>roach>stickleback>carp. Overall, the responses to steroid estrogens in vitro via ERα compared well with those seen in vivo (VTG induction for exposure to EE2) showing in vitro screening of chemicals using fish ERα-mediated responses indicative of estrogenic responses (VTG induction) in vivo.
ISSN:0166-445X
1879-1514
DOI:10.1016/j.aquatox.2011.09.004