Loading…
Precision measurements and computations of transition energies in rotationally cold triatomic hydrogen ions up to the midvisible spectral range
First-principles computations and experimental measurements of transition energies are carried out for vibrational overtone lines of the triatomic hydrogen ion H(3)(+) corresponding to floppy vibrations high above the barrier to linearity. Action spectroscopy is improved to detect extremely weak vis...
Saved in:
Published in: | Physical review letters 2012-01, Vol.108 (2), p.023002-023002, Article 023002 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | First-principles computations and experimental measurements of transition energies are carried out for vibrational overtone lines of the triatomic hydrogen ion H(3)(+) corresponding to floppy vibrations high above the barrier to linearity. Action spectroscopy is improved to detect extremely weak visible-light spectral lines on cold trapped H(3)(+) ions. A highly accurate potential surface is obtained from variational calculations using explicitly correlated Gaussian wave function expansions. After nonadiabatic corrections, the floppy H(3)(+) vibrational spectrum is reproduced at the 0.1 cm(-1) level up to 16600 cm(-1). |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.108.023002 |