Loading…

Time-course changes in fungal elicitor-induced lignan synthesis and expression of the relevant genes in cell cultures of Linum album

Linum album has been shown to accumulate anti-tumor podophyllotoxin (PTOX) and its related lignans. In the present study, we examined the effects of five fungal extracts on the production of lignans in L. album cell cultures. Fusarium graminearum extract induced the highest increase of PTOX [140μgg−...

Full description

Saved in:
Bibliographic Details
Published in:Journal of plant physiology 2012-03, Vol.169 (5), p.487-491
Main Authors: Esmaeilzadeh Bahabadi, Sedigheh, Sharifi, Mozafar, Behmanesh, Mehrdad, Safaie, Naser, Murata, Jun, Araki, Ryoichi, Yamagaki, Tohru, Satake, Honoo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Linum album has been shown to accumulate anti-tumor podophyllotoxin (PTOX) and its related lignans. In the present study, we examined the effects of five fungal extracts on the production of lignans in L. album cell cultures. Fusarium graminearum extract induced the highest increase of PTOX [140μgg−1 dry weight (DW) of the L. album cell culture] which is seven-fold greater than the untreated control, while Rhizopus stolonifer extract enhanced the accumulation of lariciresinol, instead of PTOX, up to 365μgg−1 DW, which was 8.8-fold greater than the control. Quantitative PCR analyses showed that expression of the enzyme genes responsible for the PTOX biosynthesis cascade, such as pinoresinol-lariciresinol reductase (PLR), phenylalanine ammonia-lyase (PAL), cinnamoyl-CoA reductase (CCR) and cinnamyl-alcohol dehydrogenase (CAD) genes, were also up-regulated in a fungal extract-selective fashion. These results provide evidence that the fungal extracts used in this study differentially increase the production of PTOX or larisiresinol via the up-regulation of the genes in lignan biosynthesis in L. album cell cultures, and suggest that such selective actions of fungal elicitors on the lignan synthesis will lead to more efficient metabolic engineering-based production of PTOX and other beneficial lignans using L. album cell cultures.
ISSN:0176-1617
1618-1328
DOI:10.1016/j.jplph.2011.12.006